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CHAPTER 1

Networking Introduction

“Guilty until proven innocent.” That’s the mantra of networks and the engineers who
supervise them. In this opening chapter, we will wade through the development of
networking technologies and standards, give a brief overview of the dominant theory
of networking, and introduce our Golang web server that will be the basis of the net‐
working examples in Kubernetes and the cloud throughout the book.

Let’s begin…at the beginning.

Networking History
The internet we know today is vast, with cables spanning oceans and mountains and
connecting cities with lower latency than ever before. Barrett Lyon’s “Mapping the
Internet,” shown in Figure 1-1, shows just how vast it truly is. That image illustrates
all the connections between the networks of networks that make up the internet. The
purpose of a network is to exchange information from one system to another system.
That is an enormous ask of a distributed global system, but the internet was not
always global; it started as a conceptual model and slowly was built up over time, to
the behemoth in Lyon’s visually stunning artwork. There are many factors to consider
when learning about networking, such as the last mile, the connectivity between a
customer’s home and their internet service provider’s network—all the way to scaling
up to the geopolitical landscape of the internet. The internet is integrated into the fab‐
ric of our society. In this book, we will discuss how networks operate and how Kuber‐
netes abstracts them for us.
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Figure 1-1. Barrett Lyon, “Mapping the Internet,” 2003

Table 1-1 briefly outlines the history of networking before we dive into a few of the
important details.

Table 1-1. A brief history of networking

Year Event
1969 ARPANET’s first connection test

1969 Telnet 1969 Request for Comments (RFC) 15 drafted

1971 FTP RFC 114 drafted

1973 FTP RFC 354 drafted

1974 TCP RFC 675 by Vint Cerf, Yogen Dalal, and Carl Sunshine drafted

1980 Development of Open Systems Interconnection model begins

1981 IP RFC 760 drafted

1982 NORSAR and University College London left the ARPANET and began using TCP/IP over SATNET

1984 ISO 7498 Open Systems Interconnection (OSI) model published

1991 National Information Infrastructure (NII) Bill passed with Al Gore’s help

1991 First version of Linux released

2015 First version of Kubernetes released
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In its earliest forms, networking was government run or sponsored; in the United
States, the Department of Defense (DOD) sponsored the Advanced Research Projects
Agency Network (ARPANET), well before Al Gore’s time in politics, which will be
relevant in a moment. In 1969, ARPANET was deployed at the University of Califor‐
nia–Los Angeles, the Augmentation Research Center at Stanford Research Institute,
the University of California–Santa Barbara, and the University of Utah School of
Computing. Communication between these nodes was not completed until 1970,
when they began using the Network Control Protocol (NCP). NCP led to the devel‐
opment and use of the first computer-to-computer protocols like Telnet and File
Transfer Protocol (FTP).

The success of ARPANET and NCP, the first protocol to power ARPANET, led to
NCP’s downfall. It could not keep up with the demands of the network and the vari‐
ety of networks connected. In 1974, Vint Cerf, Yogen Dalal, and Carl Sunshine began 
drafting RFC 675 for Transmission Control Protocol (TCP). (You’ll learn more about
RFCs in a few paragraphs.) TCP would go on to become the standard for network
connectivity. TCP allowed for exchanging packets across different types of networks.
In 1981, the Internet Protocol (IP), defined in RFC 791, helped break out the respon‐
sibilities of TCP into a separate protocol, increasing the modularity of the network. In
the following years, many organizations, including the DOD, adopted TCP as the
standard. By January 1983, TCP/IP had become the only approved protocol on
ARPANET, replacing the earlier NCP because of its versatility and modularity.

A competing standards organization, the International Organization for Standardiza‐
tion (ISO), developed and published ISO 7498, “Open Systems Interconnection Ref‐
erence Model,” which detailed the OSI model. With its publication also came the
protocols to support it. Unfortunately, the OSI model protocols never gained traction
and lost out to the popularity of TCP/IP. The OSI model is still an excellent learning
tool for understanding the layered approach to networking, however.

In 1991, Al Gore invented the internet (well, really he helped pass the National Infor‐
mation Infrastructure [NII] Bill), which helped lead to the creation of the Internet
Engineering Task Force (IETF). Nowadays standards for the internet are under the
management of the IETF, an open consortium of leading experts and companies in
the field of networking, like Cisco and Juniper. RFCs are published by the Internet
Society and the Internet Engineering Task Force. RFCs are prominently authored by
individuals or groups of engineers and computer scientists, and they detail their pro‐
cesses, operations, and applications for the internet’s functioning.
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An IETF RFC has two states:

Proposed Standard
A protocol specification has reached enough community support to be consid‐
ered a standard. The designs are stable and well understood. A proposed stan‐
dard can be deployed, implemented, and tested. It may be withdrawn from
further consideration, however.

Internet Standard
Per RFC 2026: “In general, an internet standard is a stable specification and well
understood, technically competent, has multiple, independent, and interoperable
implementations with substantial operational experience, enjoys significant pub‐
lic support, and is recognizably useful in some parts of the internet.”

Draft standard is a third classification that was discontinued in
2011.

There are thousands of internet standards defining how to implement protocols for
all facets of networking, including wireless, encryption, and data formats, among oth‐
ers. Each one is implemented by contributors of open source projects and privately by
large organizations like Cisco.

A lot has happened in the nearly 50 years since those first connectivity tests. Net‐
works have grown in complexity and abstractions, so let’s start with the OSI model.

OSI Model
The OSI model is a conceptual framework for describing how two systems communi‐
cate over a network. The OSI model breaks down the responsibility of sending data
across networks into layers. This works well for educational purposes to describe the
relationships between each layer’s responsibility and how data gets sent over net‐
works. Interestingly enough, it was meant to be a protocol suite to power networks
but lost to TCP/IP.

Here are the ISO standards that outline the OSI model and protocols:

• ISO/IEC 7498-1, “The Basic Model”
• ISO/IEC 7498-2, “Security Architecture”
• ISO/IEC 7498-3, “Naming and Addressing”
• ISO/IEC 7498-4, “Management Framework”
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The ISO/IEC 7498-1 describes what the OSI model attempts to convey:

5.2.2.1 The basic structuring technique in the Reference Model of Open Systems Inter‐
connection is layering. According to this technique, each open system is viewed as log‐
ically composed of an ordered set of (N)-subsystems… Adjacent (N)-subsystems
communicate through their common boundary. (N)-subsystems of the same rank (N)
collectively form the (N)-layer of the Reference Model of Open Systems Interconnec‐
tion. There is one and only one (N)-subsystem in an open system for layer N. An (N)-
subsystem consists of one or several (N)-entities. Entities exist in each (N)-layer.
Entities in the same (N)-layer are termed peer-(N)-entities. Note that the highest layer
does not have an (N+l)-layer above it, and the lowest layer does not have an (N-1)-
layer below it.

The OSI model description is a complex and exact way of saying networks have layers
like cakes or onions. The OSI model breaks the responsibilities of the network into
seven distinct layers, each with different functions to aid in transmitting information
from one system to another, as shown in Figure 1-2. The layers encapsulate informa‐
tion from the layer below it; these layers are Application, Presentation, Session,
Transport, Network, Data Link, and Physical. Over the next few pages, we will go
over each layer’s functionality and how it sends data between two systems.

Figure 1-2. OSI model layers

Each layer takes data from the previous layer and encapsulates it to make its Protocol
Data Unit (PDU). The PDU is used to describe the data at each layer. PDUs are also
part of TCP/IP. The applications of the Session layer are considered “data” for the
PDU, preparing the application information for communication. Transport uses ports
to distinguish what process on the local system is responsible for the data. The
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Network layer PDU is the packet. Packets are distinct pieces of data routed between
networks. The Data Link layer is the frame or segment. Each packet is broken up into
frames, checked for errors, and sent out on the local network. The Physical layer
transmits the frame in bits over the medium. Next we will outline each layer in detail:

Application
The Application layer is the top layer of the OSI model and is the one the end
user interacts with every day. This layer is not where actual applications live, but
it provides the interface for applications that use it like a web browser or Office
365. The single biggest interface is HTTP; you are probably reading this book on
a web page hosted by an O’Reilly web server. Other examples of the Application
layer that we use daily are DNS, SSH, and SMTP. Those applications are respon‐
sible for displaying and arranging data requested and sent over the network.

Presentation
This layer provides independence from data representation by translating
between application and network formats. It can be referred to as the syntax
layer. This layer allows two systems to use different encodings for data and still
pass data between them. Encryption is also done at this layer, but that is a more
complicated story we’ll save for “TLS” on page 25.

Session
The Session layer is responsible for the duplex of the connection, in other words,
whether sending and receiving data at the same time. It also establishes proce‐
dures for performing checkpointing, suspending, restarting, and terminating a
session. It builds, manages, and terminates the connections between the local and
remote applications.

Transport
The Transport layer transfers data between applications, providing reliable data
transfer services to the upper layers. The Transport layer controls a given connec‐
tion’s reliability through flow control, segmentation and desegmentation, and
error control. Some protocols are state- and connection-oriented. This layer
tracks the segments and retransmits those that fail. It also provides the acknowl‐
edgment of successful data transmission and sends the next data if no errors 
occurred. TCP/IP has two protocols at this layer: TCP and User Datagram
Protocol (UDP).

Network
The Network layer implements a means of transferring variable-length data flows
from a host on one network to a host on another network while sustaining
service quality. The Network layer performs routing functions and might also
perform fragmentation and reassembly while reporting delivery errors. Routers
operate at this layer, sending data throughout the neighboring networks. Several
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management  protocols  belong  to  the  Network  layer,  including  routing  pro‐
tocols,  multicast  group  management,  network-layer information, error han‐
dling, and network-layer address assignment, which we will discuss further in
“TCP/IP” on page 8.

Data Link
This layer is responsible for the host-to-host transfers on the same network. It
defines the protocols to create and terminate the connections between two devi‐
ces. The Data Link layer transfers data between network hosts and provides the
means to detect and possibly correct errors from the Physical layer. Data Link
frames, the PDU for layer 2, do not cross the boundaries of a local network.

Physical
The Physical layer is represented visually by an Ethernet cord plugged into a
switch. This layer converts data in the form of digital bits into electrical, radio, or
optical signals. Think of this layer as the physical devices, like cables, switches,
and wireless access points. The wire signaling protocols are also defined at this
layer.

There are many mnemonics to remember the layers of the OSI
model; our favorite is All People Seem To Need Data Processing.

Table 1-2 summarizes the OSI layers.

Table 1-2. OSI layer details

Layer
number

Layer name Protocol data
unit

Function overview

7 Application Data High-level APIs and application protocols like HTTP, DNS, and SSH.

6 Presentation Data Character encoding, data compression, and encryption/decryption.

5 Session Data Continuous data exchanges between nodes are managed here: how much
data to send, when to send more.

4 Transport Segment,
datagram

Transmission of data segments between endpoints on a network, including
segmentation, acknowledgment, and multiplexing.

3 Network Packet Structuring and managing addressing, routing, and traffic control for all
endpoints on the network.

2 Data Link Frame Transmission of data frames between two nodes connected by a Physical
layer.

1 Physical Bit Sending and receiving of bitstreams over the medium.
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The OSI model breaks down all the necessary functions to send a data packet over a
network between two hosts. In the late 1980s and early 1990s, it lost out to TCP/IP as
the standard adopted by the DOD and all other major players in networking. The
standard defined in ISO 7498 gives a brief glimpse into the implementation details
that were considered by most at the time to be complicated, inefficient, and to an
extent unimplementable. The OSI model at a high level still allows those learning net‐
working to comprehend the basic concepts and challenges in networking. In addi‐
tion, these terms and functions are used in the TCP/IP model covered in the next
section and ultimately in Kubernetes abstractions. Kubernetes services break out each
function depending on the layer it is operating at, for example, a layer 3 IP address or
a layer 4 port; you will learn more about that in Chapter 4. Next, we will do a deep
dive into the TCP/IP suite with an example walk-through.

TCP/IP
TCP/IP creates a heterogeneous network with open protocols that are independent of
the operating system and architectural differences. Whether the hosts are running
Windows, Linux, or another OS, TCP/IP allows them to communicate; TCP/IP does
not care if you are running Apache or Nginx for your web server at the Application
layer. The separation of responsibilities similar to the OSI model makes that possible.
In Figure 1-3, we compare the OSI model to TCP/IP.

Figure 1-3. OSI model compared to TCP/IP
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Here we expand on the differences between the OSI model and the TCP/IP:

Application
In TCP/IP, the Application layer comprises the communications protocols used
in process-to-process communications across an IP network. The Application
layer standardizes communication and depends upon the underlying Transport
layer protocols to establish the host-to-host data transfer. The lower Transport
layer also manages the data exchange in network communications. Applications
at this layer are defined in RFCs; in this book, we will continue to use HTTP, RFC
7231 as our example for the Application layer.

Transport
TCP and UDP are the primary protocols of the Transport layer that provide
host-to-host communication services for applications. Transport protocols are
responsible for connection-oriented communication, reliability, flow control, and
multiplexing. In TCP, the window size manages flow control, while UDP does
not manage the congestion flow and is considered unreliable; you’ll learn more
about that in “UDP” on page 28. Each port identifies the host process responsible
for processing the information from the network communication. HTTP uses
the well-known port 80 for nonsecure communication and 443 for secure com‐
munication. Each port on the server identifies its traffic, and the sender generates
a random port locally to identify itself. The governing body that manages port
number assignments is the Internet Assigned Number Authority (IANA); there
are 65,535 ports.

Internet
The Internet, or Network layer, is responsible for transmitting data between net‐
works. For an outgoing packet, it selects the next-hop host and transmits it to
that host by passing it to the appropriate link-layer. Once the packet is received
by the destination, the Internet layer will pass the packet payload up to the
appropriate Transport layer protocol.

IP provides the fragmentation or defragmentation of packets based on the maxi‐
mum transmission unit (MTU); this is the maximum size of the IP packet. IP
makes no guarantees about packets’ proper arrival. Since packet delivery across
diverse networks is inherently unreliable and failure-prone, that burden is with
the endpoints of a communication path, rather than on the network. The func‐
tion of providing service reliability is in the Transport layer. A checksum ensures
that the information in a received packet is accurate, but this layer does not vali‐
date data integrity. The IP address identifies packets on the network.

Link
The Link layer in the TCP/IP model comprises networking protocols that operate
only on the local network that a host connects to. Packets are not routed to non‐
local networks; that is the Internet layer’s role. Ethernet is the dominant protocol
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at this layer, and hosts are identified by the link-layer address or commonly their
Media Access Control addresses on their network interface cards. Once deter‐
mined by the host using Address Resolution Protocol 9 (ARP), data sent off the
local network is processed by the Internet layer. This layer also includes protocols
for moving packets between two Internet layer hosts.

Physical layer
The Physical layer defines the components of the hardware to use for the net‐
work. For example, the Physical network layer stipulates the physical characteris‐
tics of the communications media. The Physical layer of TCP/IP details hardware
standards such as IEEE 802.3, the specification for Ethernet network media. Sev‐
eral interpretations of RFC 1122 for the Physical layer are included with the other
layers; we have added this for completeness.

Throughout this book, we will use the minimal Golang web server (also called Go)
from Example 1-1 to show various levels of networking components from tcpdump, a
Linux syscall, to show how Kubernetes abstracts the syscalls. This section will use it to
demonstrate what is happening at the Application, Transport, Network, and Data
Link layers.

Application
As mentioned, Application is the highest layer in the TCP/IP stack; it is where the
user interacts with data before it gets sent over the network. In our example walk-
through, we are going to use Hypertext Transfer Protocol (HTTP) and a simple
HTTP transaction to demonstrate what happens at each layer in the TCP/IP stack.

HTTP
HTTP is responsible for sending and receiving Hypertext Markup Language (HTML)
documents—you know, a web page. A vast majority of what we see and do on the
internet is over HTTP: Amazon purchases, Reddit posts, and tweets all use HTTP. A
client will make an HTTP request to our minimal Golang web server from
Example 1-1, and it will send an HTTP response with “Hello” text. The web server
runs locally in an Ubuntu virtual machine to test the full TCP/IP stack.

See the example code repository for full instructions.
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Example 1-1. Minimal web server in Go

package main

import (
 "fmt"
 "net/http"
)

func hello(w http.ResponseWriter, _ *http.Request) {
 fmt.Fprintf(w, "Hello")
}

func main() {
 http.HandleFunc("/", hello)
 http.ListenAndServe("0.0.0.0:8080", nil)
}

In our Ubuntu virtual machine we need to start our minimal web server, or if you
have Golang installed locally, you can just run this:

go run web-server.go

Let’s break down the request for each layer of the TPC/IP stack.

cURL is the requesting client for our HTTP request example. Generally, for a web
page, the client would be a web browser, but we’re using cURL to simplify and show
the command line.

cURL is meant for uploading and downloading data specified with
a URL. It is a client-side program (the c) to request data from a
URL and return the response.

In Example 1-2, we can see each part of the HTTP request that the cURL client is
making and the response. Let’s review what all those options and outputs are.

Example 1-2. Client request

○ → curl localhost:8080 -vvv 
*   Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080 
> GET / HTTP/1.1 
> Host: localhost:8080 
> User-Agent: curl/7.64.1 
> Accept: */* 
>
< HTTP/1.1 200 OK 
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< Date: Sat, 25 Jul 2020 14:57:46 GMT 
< Content-Length: 5 
< Content-Type: text/plain; charset=utf-8 
<
* Connection #0 to host localhost left intact
Hello* Closing connection 0 

curl localhost:8080 -vvv: This is the curl command that opens a connection
to the locally running web server, localhost on TCP port 8080. -vvv sets the
verbosity of the output so we can see everything happening with the request.
Also, TCP_NODELAY instructs the TCP connection to send the data without delay,
one of many options available to the client to set.

Connected to localhost (::1) port 8080: It worked! cURL connected to the
web server on localhost and over port 8080.

Get / HTTP/1.1: HTTP has several methods for retrieving or updating informa‐
tion. In our request, we are performing an HTTP GET to retrieve our “Hello”
response. The forward slash is the next part, a Uniform Resource Locator (URL),
which indicates where we are sending the client request to the server. The last
section of this header is the version of HTTP the server is using, 1.1.

Host: localhost:8080: HTTP has several options for sending information about
the request. In our request, the cURL process has set the HTTP Host header. The
client and server can transmit information with an HTTP request or response.
An HTTP header contains its name followed by a colon (:) and then its value.

User-Agent: cURL/7.64.1: The user agent is a string that indicates the computer
program making the HTTP request on behalf of the end user; it is cURL in our
context. This string often identifies the browser, its version number, and its host
operating system.

Accept: */*: This header instructs the web server what content types the client
understands. Table 1-3 shows examples of common content types that can be
sent.

HTTP/1.1 200 OK: This is the server response to our request. The server responds
with the HTTP version and the response status code. There are several possible
responses from the server. A status code of 200 indicates the response was suc‐
cessful. 1XX means informational, 2XX means successful, 3XX means redirects,
4XX responses indicate there are issues with the requests, and 5XX generally
refers to issues from the server.
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Date: Sat, July 25, 2020, 14:57:46 GMT: The Date header field represents
the date and time at which the message originated. The sender generates the
value as the approximate date and time of message generation.

Content-Length: 5: The Content-Length header indicates the size of the mes‐
sage body, in bytes, sent to the recipient; in our case, the message is 5 bytes.

Content-Type: text/plain; charset=utf-8: The Content-Type entity header
is used to indicate the resource’s media type. Our response is indicating that it is
returning a plain-text file that is UTF-8 encoded.

Hello* Closing connection 0: This prints out the response from our web
server and closes out the HTTP connection.

Table 1-3. Common content types for HTTP data

Type Description
application Any kind of binary data that doesn’t fall explicitly into one of the other types. Common examples include

application/json, application/pdf, application/pkcs8, and application/zip.

audio Audio or music data. Examples include audio/mpeg and audio/vorbis.

font Font/typeface data. Common examples include font/woff, font/ttf, and font/otf.

image Image or graphical data including both bitmap and vector such as animated GIF or APNG. Common examples are
image/jpg, image/png, and image/svg+xml.

model Model data for a 3D object or scene. Examples include model/3mf and model/vrml.

text Text-only data including human-readable content, source code, or text data. Examples include text/plain, text/
csv, and text/html.

video Video data or files, such as video/mp4.

This is a simplistic view that happens with every HTTP request. Today, a single web
page makes an exorbitant number of requests with one load of a page, and in just a
matter of seconds! This is a brief example for cluster administrators of how HTTP
(and for that matter, the other seven layers’ applications) operate. We will continue to
build our knowledge of how this request is completed at each layer of the TCP/IP
stack and then how Kubernetes completes those same requests. All this data is for‐
matted and options are set at layer 7, but the real heavy lifting is done at the lower
layers of the TCP/IP stack, which we will go over in the next sections.

Transport
The Transport layer protocols are responsible for connection-oriented communica‐
tion, reliability, flow control, and multiplexing; this is mostly true of TCP. We’ll
describe the differences in the following sections. Our Golang web server is a layer 7
application using HTTP; the Transport layer that HTTP relies on is TCP.
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TCP
As already mentioned, TCP is a connection-oriented, reliable protocol, and it pro‐
vides flow control and multiplexing. TCP is considered connection-oriented because
it manages the connection state through the life cycle of the connection. In TCP, the
window size manages flow control, unlike UDP, which does not manage the conges‐
tion flow. In addition, UDP is unreliable, and data may arrive out of sequence. Each 
port identifies the host process responsible for processing the information from the
network communication. TCP is known as a host-to-host layer protocol. To identify
the process on the host responsible for the connection, TCP identifies the segments
with a 16-bit port number. HTTP servers use the well-known port of 80 for nonse‐
cure communication and 443 for secure communication using Transport Layer Secu‐
rity (TLS). Clients requesting a new connection create a source port local in the range
of 0–65534.

To understand how TCP performs multiplexing, let’s review a simple HTML page
retrieval:

1. In a web browser, type in a web page address.
2. The browser opens a connection to transfer the page.
3. The browser opens connections for each image on the page.
4. The browser opens another connection for the external CSS.
5. Each of these connections uses a different set of virtual ports.
6. All the page’s assets download simultaneously.
7. The browser reconstructs the page.

Let’s walk through how TCP manages multiplexing with the information provided in
the TCP segment headers:

Source port (16 bits)
This identifies the sending port.

Destination port (16 bits)
This identifies the receiving port.

Sequence number (32 bits)
If the SYN flag is set, this is the initial sequence number. The sequence number of
the first data byte and the acknowledged number in the corresponding ACK is
this sequence number plus 1. It is also used to reassemble data if it arrives out of
order.
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Acknowledgment number (32 bits)
If the ACK flag is set, then this field’s value is the next sequence number of the
ACK the sender is expecting. This acknowledges receipt of all preceding bytes (if
any). Each end’s first ACK acknowledges the other end’s initial sequence number
itself, but no data has been sent.

Data offset (4 bits)
This specifies the size of the TCP header in 32-bit words.

Reserved (3 bits)
This is for future use and should be set to zero.

Flags (9 bits)
There are nine 1-bit fields defined for the TCP header:

• NS–ECN-nonce: Concealment protection.
• CWR: Congestion Window Reduced; the sender reduced its sending rate.
• ECE: ECN Echo; the sender received an earlier congestion notification.
• URG: Urgent; the Urgent Pointer field is valid, but this is rarely used.
• ACK: Acknowledgment; the Acknowledgment Number field is valid and is

always on after a connection is established.
• PSH: Push; the receiver should pass this data to the application as soon as

possible.
• RST: Reset the connection or connection abort, usually because of an error.
• SYN: Synchronize sequence numbers to initiate a connection.
• FIN: The sender of the segment is finished sending data to its peer.

The NS bit field is further explained in RFC 3540, “Robust
Explicit Congestion Notification (ECN) Signaling with Non‐
ces.” This specification describes an optional addition to ECN
improving robustness against malicious or accidental conceal‐
ment of marked packets.

Window size (16 bits)
This is the size of the receive window.

Checksum (16 bits)
The checksum field is used for error checking of the TCP header.
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Urgent pointer (16 bits)
This is an offset from the sequence number indicating the last urgent data byte.

Options

Variable 0–320 bits, in units of 32 bits.

Padding

The TCP header padding is used to ensure that the TCP header ends, and data
begins on a 32-bit boundary.

Data

This is the piece of application data being sent in this segment.

In Figure 1-4, we can see all the TCP segment headers that provide metadata about
the TCP streams.

Figure 1-4. TCP segment header

These fields help manage the flow of data between two systems. Figure 1-5 shows
how each step of the TCP/IP stack sends data from one application on one host,
through a network communicating at layers 1 and 2, to get data to the destination
host.
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Figure 1-5. tcp/ip data flow

In the next section, we will show how TCP uses these fields to initiate a connection
through the three-way handshake.

TCP handshake
TCP uses a three-way handshake, pictured in Figure 1-6, to create a connection by
exchanging information along the way with various options and flags:

1. The requesting node sends a connection request via a SYN packet to get the
transmission started.

2. If the receiving node is listening on the port the sender requests, the receiving
node replies with a SYN-ACK, acknowledging that it has heard the requesting
node.

3. The requesting node returns an ACK packet, exchanging information and letting
them know the nodes are good to send each other information.
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Figure 1-6. TCP three-way handshake

Now the connection is established. Data can be transmitted over the physical
medium, routed between networks, to find its way to the local destination—but how
does the endpoint know how to handle the information? On the local and remote
hosts, a socket gets created to track this connection. A socket is just a logical endpoint
for communication. In Chapter 2, we will discuss how a Linux client and server han‐
dle sockets.

TCP is a stateful protocol, tracking the connection’s state throughout its life cycle.
The state of the connection depends on both the sender and the receiver agreeing
where they are in the connection flow. The connection state is concerned about who
is sending and receiving data in the TCP stream. TCP has a complex state transition
for explaining when and where the connection is, using the 9-bit TCP flags in the
TCP segment header, as you can see in Figure 1-7.

The TCP connection states are:

LISTEN (server)
Represents waiting for a connection request from any remote TCP and port

SYN-SENT (client)
Represents waiting for a matching connection request after sending a connection
request

SYN-RECEIVED (server)
Represents waiting for a confirming connection request acknowledgment after
having both received and sent a connection request

ESTABLISHED (both server and client)
Represents an open connection; data received can be delivered to the user—the
intermediate state for the data transfer phase of the connection

FIN-WAIT-1 (both server and client)
Represents waiting for a connection termination request from the remote host

FIN-WAIT-2 (both server and client)
Represents waiting for a connection termination request from the remote TCP
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CLOSE-WAIT (both server and client)
Represents waiting for a local user’s connection termination request

CLOSING (both server and client)
Represents waiting for a connection termination request acknowledgment from
the remote TCP

LAST-ACK (both server and client)
Represents waiting for an acknowledgment of the connection termination
request previously sent to the remote host

TIME-WAIT (either server or client)
Represents waiting for enough time to pass to ensure the remote host received
the acknowledgment of its connection termination request

CLOSED (both server and client)
Represents no connection state at all

Figure 1-7. TCP state transition diagram
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Example 1-3 is a sample of a Mac’s TCP connections, their state, and the addresses for
both ends of the connection.

Example 1-3. TCP connection states

○ → netstat -ap TCP
Active internet connections (including servers)
Proto Recv-Q Send-Q  Local Address          Foreign Address        (state)
tcp6       0      0  2607:fcc8:a205:c.53606 g2600-1407-2800-.https ESTABLISHED
tcp6       0      0  2607:fcc8:a205:c.53603 g2600-1408-5c00-.https ESTABLISHED
tcp4       0      0  192.168.0.17.53602     ec2-3-22-64-157..https ESTABLISHED
tcp6       0      0  2607:fcc8:a205:c.53600 g2600-1408-5c00-.https ESTABLISHED
tcp4       0      0  192.168.0.17.53598     164.196.102.34.b.https ESTABLISHED
tcp4       0      0  192.168.0.17.53597     server-99-84-217.https ESTABLISHED
tcp4       0      0  192.168.0.17.53596     151.101.194.137.https  ESTABLISHED
tcp4       0      0  192.168.0.17.53587     ec2-52-27-83-248.https ESTABLISHED
tcp6       0      0  2607:fcc8:a205:c.53586 iad23s61-in-x04..https ESTABLISHED
tcp6       0      0  2607:fcc8:a205:c.53542 iad23s61-in-x04..https ESTABLISHED
tcp4       0      0  192.168.0.17.53536     ec2-52-10-162-14.https ESTABLISHED
tcp4       0      0  192.168.0.17.53530     server-99-84-178.https ESTABLISHED
tcp4       0      0  192.168.0.17.53525     ec2-52-70-63-25..https ESTABLISHED
tcp6       0      0  2607:fcc8:a205:c.53480 upload-lb.eqiad..https ESTABLISHED
tcp6       0      0  2607:fcc8:a205:c.53477 text-lb.eqiad.wi.https ESTABLISHED
tcp4       0      0  192.168.0.17.53466     151.101.1.132.https    ESTABLISHED
tcp4       0      0  192.168.0.17.53420     ec2-52-0-84-183..https ESTABLISHED
tcp4       0      0  192.168.0.17.53410     192.168.0.18.8060      CLOSE_WAIT
tcp6       0      0  2607:fcc8:a205:c.53408 2600:1901:1:c36:.https ESTABLISHED
tcp4       0      0  192.168.0.17.53067     ec2-52-40-198-7..https ESTABLISHED
tcp4       0      0  192.168.0.17.53066     ec2-52-40-198-7..https ESTABLISHED
tcp4       0      0  192.168.0.17.53055     ec2-54-186-46-24.https ESTABLISHED
tcp4       0      0  localhost.16587        localhost.53029        ESTABLISHED
tcp4       0      0  localhost.53029        localhost.16587        ESTABLISHED
tcp46      0      0  *.16587                *.*                    LISTEN
tcp6      56      0  2607:fcc8:a205:c.56210 ord38s08-in-x0a..https CLOSE_WAIT
tcp6       0      0  2607:fcc8:a205:c.51699 2606:4700::6810:.https ESTABLISHED
tcp4       0      0  192.168.0.17.64407     do-77.lastpass.c.https ESTABLISHED
tcp4       0      0  192.168.0.17.64396     ec2-54-70-97-159.https ESTABLISHED
tcp4       0      0  192.168.0.17.60612     ac88393aca5853df.https ESTABLISHED
tcp4       0      0  192.168.0.17.58193     47.224.186.35.bc.https ESTABLISHED
tcp4       0      0  localhost.63342        *.*                    LISTEN
tcp4       0      0  localhost.6942         *.*                    LISTEN
tcp4       0      0  192.168.0.17.55273     ec2-50-16-251-20.https ESTABLISHED

Now that we know more about how TCP constructs and tracks connections, let’s
review the HTTP request for our web server at the Transport layer using TCP. To
accomplish this, we use a command-line tool called tcpdump.
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tcpdump

tcpdump prints out a description of the contents of packets on a network interface that
matches the boolean expression.

—tcpdump man page

tcpdump allows administrators and users to display all the packets processed on the
system and filter them out based on many TCP segment header details. In the
request, we filter all packets with the destination port 8080 on the network interface
labeled lo0; this is the local loopback interface on the Mac. Our web server is running
on 0.0.0.0:8080. Figure 1-8 shows where tcpdump is collecting data in reference to the
full TCP/IP stack, between the network interface card (NIC) driver and layer 2.

Figure 1-8. tcpdump packet capture

A loopback interface is a logical, virtual interface on a device. A
loopback interface is not a physical interface like Ethernet interface.
Loopback interfaces are always up and running and always avail‐
able, even if other interfaces are down on the host.

The general format of a tcpdump output will contain the following fields: tos,TTL, id,
offset, flags, proto, length, and options. Let’s review these:

tos

The type of service field.

TTL

The time to live; it is not reported if it is zero.

id

The IP identification field.
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offset

The fragment offset field; it is printed whether this is part of a fragmented data‐
gram or not.

flags

The DF, Don’t Fragment, flag, which indicates that the packet cannot be fragmen‐
ted for transmission. When unset, it indicates that the packet can be fragmented.
The MF, More Fragments, flag indicates there are packets that contain more frag‐
ments and when unset, it indicates that no more fragments remain.

proto

The protocol ID field.

length

The total length field.

options

The IP options.

Systems that support checksum offloading and IP, TCP, and UDP checksums are cal‐
culated on the NIC before being transmitted on the wire. Since we are running a
tcpdump packet capture before the NIC, errors like cksum 0xfe34 (incorrect ->
0xb4c1) appear in the output of Example 1-4.

To produce the output for Example 1-4, open another terminal and start a tcpdump
trace on the loopback for only TCP and port 8080; otherwise, you will see a lot of
other packets not relevant to our example. You’ll need to use escalated privileges to
trace packets, so that means using sudo in this case.

Example 1-4. tcpdump

○ → sudo tcpdump -i lo0 tcp port 8080 -vvv  

tcpdump: listening on lo0, link-type NULL (BSD loopback),
capture size 262144 bytes  

08:13:55.009899 localhost.50399 > localhost.http-alt: Flags [S],
cksum 0x0034 (incorrect -> 0x1bd9), seq 2784345138,
win 65535, options [mss 16324,nop,wscale 6,nop,nop,TS val 587364215 ecr 0,
sackOK,eol], length 0 

08:13:55.009997 localhost.http-alt > localhost.50399: Flags [S.],
cksum 0x0034 (incorrect -> 0xbe5a), seq 195606347,
ack 2784345139, win 65535, options [mss 16324,nop,wscale 6,nop,nop,
TS val 587364215 ecr 587364215,sackOK,eol], length 0  

08:13:55.010012 localhost.50399 > localhost.http-alt: Flags [.],
cksum 0x0028 (incorrect -> 0x1f58), seq 1, ack 1,
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win 6371, options [nop,nop,TS val 587364215 ecr 587364215],
length 0  

v 08:13:55.010021 localhost.http-alt > localhost.50399: Flags [.],
cksum 0x0028 (incorrect -> 0x1f58), seq 1, ack
1, win 6371, options [nop,nop,TS val 587364215 ecr 587364215],
length 0  

08:13:55.010079 localhost.50399 > localhost.http-alt: Flags [P.],
cksum 0x0076 (incorrect -> 0x78b2), seq 1:79,
ack 1, win 6371, options [nop,nop,TS val 587364215 ecr 587364215],
length 78: HTTP, length: 78  
GET / HTTP/1.1
Host: localhost:8080
User-Agent: curl/7.64.1
Accept: */*
08:13:55.010102 localhost.http-alt > localhost.50399: Flags [.],
cksum 0x0028 (incorrect -> 0x1f0b), seq 1,
ack 79, win 6370, options [nop,nop,TS val 587364215 ecr 587364215],
length 0  

08:13:55.010198 localhost.http-alt > localhost.50399: Flags [P.],
cksum 0x00a1 (incorrect -> 0x05d7), seq 1:122,
ack 79, win 6370, options [nop,nop,TS val 587364215 ecr 587364215],
length 121: HTTP, length: 121  
HTTP/1.1 200 OK
Date: Wed, 19 Aug 2020 12:13:55 GMT
Content-Length: 5
Content-Type: text/plain; charset=utf-8
Hello[!http]

08:13:55.010219 localhost.50399 > localhost.http-alt: Flags [.], cksum 0x0028
(incorrect -> 0x1e93), seq 79,
ack 122, win 6369, options [nop,nop,TS val 587364215 ecr 587364215], length 0  

08:13:55.010324 localhost.50399 > localhost.http-alt: Flags [F.],
cksum 0x0028 (incorrect -> 0x1e92), seq 79,
ack 122, win 6369, options [nop,nop,TS val 587364215 ecr 587364215],
length 0  

08:13:55.010343 localhost.http-alt > localhost.50399: Flags [.],
cksum 0x0028 (incorrect -> 0x1e91), seq 122,
\ack 80, win 6370, options [nop,nop,TS val 587364215 ecr 587364215],
length 0  

08:13:55.010379 localhost.http-alt > localhost.50399: Flags [F.],
cksum 0x0028 (incorrect -> 0x1e90), seq 122,
ack 80, win 6370, options [nop,nop,TS val 587364215 ecr 587364215],
length 0  

08:13:55.010403 localhost.50399 > localhost.http-alt: Flags [.],
cksum 0x0028 (incorrect -> 0x1e91), seq 80, ack
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123, win 6369, options [nop,nop,TS val 587364215 ecr 587364215],
length 0  

 12 packets captured, 12062 packets received by filter
 0 packets dropped by kernel.  

This is the start of the tcpdump collection with its command and all of its options.
The sudo packet captures the required escalated privileges. tcpdump is the
tcpdump binary. -i lo0 is the interface from which we want to capture packets.
dst port 8080 is the matching expression that the man page discussed; here we
are matching on all packets destined for TCP port 8080, which is the port the
web service is listening to for requests. -v is the verbose option, which allows us
to see more details from the tcpdump capture.

Feedback from tcpdump letting us know about the tcpdump filter running.

This is the first packet in the TCP handshake. We can tell it’s the SYN because the
flags bit is set with [S], and the sequence number is set to 2784345138 by cURL,
with the localhost process number being 50399.

The SYN-ACK packet is the the one filtered by tcpdump from the
localhost.http-alt process, the Golang web server. The flag is to [S.], so it is a
SYN-ACK. The packet sends 195606347 as the next sequence number, and ACK
2784345139 is set to acknowledge the previous packet.

The acknowledgment packet from cURL is now sent back to the server with the
ACK flag set, [.], with the ACK and SYN numbers set to 1, indicating it is ready
to send data.

The acknowledgment number is set to 1 to indicate the client’s SYN flag’s receipt
in the opening data push.

The TCP connection is established; both the client and server are ready for data
transmission. The next packets are our data transmissions of the HTTP request
with the flag set to a data push and ACK, [P.]. The previous packets had a length
of zero, but the HTTP request is 78 bytes long, with a sequence number of 1:79.

The server acknowledges the receipt of the data transmission, with the ACK flag
set, [.], by sending the acknowledgment number of 79.

This packet is the HTTP server’s response to the cURL request. The data push
flag is set, [P.], and it acknowledges the previous packet with an ACK number of
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79. A new sequence number is set with the data transmission, 122, and the data
length is 121 bytes.

The cURL client acknowledges the receipt of the packet with the ACK flag set,
sets the acknowledgment number to 122, and sets the sequence number to 79.

The start of closing the TCP connection, with the client sending the FIN-ACK
packet, the [F.], acknowledging the receipt of the previous packet, number 122,
and a new sequence number to 80.

The server increments the acknowledgment number to 80 and sets the ACK flag.

TCP requires that both the sender and the receiver set the FIN packet for closing
the connection. This is the packet where the FIN and ACK flags are set.

This is the final ACK from the client, with acknowledgment number 123. The
connection is closed now.

tcpdump on exit lets us know the number of packets in this capture, the total
number of the packets captured during the tcpdump, and how many packets were
dropped by the operating system.

tcpdump is an excellent troubleshooting application for network engineers as well as
cluster administrators. Being able to verify connectivity at many levels in the cluster
and the network are valuable skills to have. You will see in Chapter 6 how useful
tcpdump can be.

Our example was a simple HTTP application using TCP. All of this data was sent over
the network in plain text. While this example was a simple Hello World, other
requests like our bank logins need to have some security. The Transport layer does
not offer any security protection for data transiting the network. TLS adds additional
security on top of TCP. Let’s dive into that in our next section.

TLS
TLS adds encryption to TCP. TLS is an add-on to the TCP/IP suite and is not consid‐
ered to be part of the base operation for TCP. HTTP transactions can be completed
without TLS but are not secure from eavesdroppers on the wire. TLS is a combination
of protocols used to ensure traffic is seen between the sender and the intended recipi‐
ent. TLS, much like TCP, uses a handshake to establish encryption capabilities and
exchange keys for encryption. The following steps detail the TLS handshake between
the client and the server, which can also be seen in Figure 1-9:
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1. ClientHello: This contains the cipher suites supported by the client and a random
number.

2. ServerHello: This message contains the cipher it supports and a random number.
3. ServerCertificate: This contains the server’s certificate and its server public key.
4. ServerHelloDone: This is the end of the ServerHello. If the client receives a

request for its certificate, it sends a ClientCertificate message.
5. ClientKeyExchange: Based on the server’s random number, our client generates a

random premaster secret, encrypts it with the server’s public key certificate, and
sends it to the server.

6. Key Generation: The client and server generate a master secret from the premas‐
ter secret and exchange random values.

7. ChangeCipherSpec: Now the client and server swap their ChangeCipherSpec to
begin using the new keys for encryption.

8. Finished Client: The client sends the finished message to confirm that the key
exchange and authentication were successful.

9. Finished Server: Now, the server sends the finished message to the client to end
the handshake.

Kubernetes applications and components will manage TLS for developers, so a basic
introduction is required; Chapter 5 reviews more about TLS and Kubernetes.

As demonstrated with our web server, cURL, and tcpdump, TCP is a stateful and relia‐
ble protocol for sending data between hosts. Its use of flags, combined with the
sequence and acknowledgment number dance it performs, delivers thousands of
messages over unreliable networks across the globe. That reliability comes at a cost,
however. Of the 12 packets we set, only two were real data transfers. For applications
that do not need reliability such as voice, the overhead that comes with UDP offers an
alternative. Now that we understand how TCP works as a reliable connection-
oriented protocol, let’s review how UDP differs from TCP.
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Figure 1-9. TLS handshake
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UDP
UDP offers an alternative to applications that do not need the reliability that TCP
provides. UDP is an excellent choice for applications that can withstand packet loss
such as voice and DNS. UDP offers little overhead from a network perspective, only
having four fields and no data acknowledgment, unlike its verbose brother TCP.

It is transaction-oriented, suitable for simple query and response protocols like the
Domain Name System (DNS) and Simple Network Management Protocol (SNMP).
UDP slices a request into datagrams, making it capable for use with other protocols
for tunneling like a virtual private network (VPN). It is lightweight and straightfor‐
ward, making it great for bootstrapping application data in the case of DHCP. The
stateless nature of data transfer makes UDP perfect for applications, such as voice,
that can withstand packet loss— did you hear that? UDP’s lack of retransmit also
makes it an apt choice for streaming video.

Let’s look at the small number of headers required in a UDP datagram (see
Figure 1-10):

Source port number (2 bytes)
Identifies the sender’s port. The source host is the client; the port number is
ephemeral. UDP ports have well-known numbers like DNS on 53 or DHCP
67/68.

Destination port number (2 bytes)
Identifies the receiver’s port and is required.

Length (2 bytes)
Specifies the length in bytes of the UDP header and UDP data. The minimum
length is 8 bytes, the length of the header.

Checksum (2 bytes)
Used for error checking of the header and data. It is optional in IPv4, but manda‐
tory in IPv6, and is all zeros if unused.

UDP and TCP are general transport protocols that help ship and receive data
between hosts. Kubernetes supports both protocols on the network, and services
allow users to load balance many pods using services. Also important to note is that
in each service, developers must define the transport protocol; if they do not TCP is
the default used.

28 | Chapter 1: Networking Introduction



Figure 1-10. UDP header

The next layer in the TCP/IP stack is the Internetworking layer—these are packets
that can get sent across the globe on the vast networks that make up the internet. Let’s
review how that gets completed.

Network
All TCP and UDP data gets transmitted as IP packets in TCP/IP in the Network layer.
The Internet or Network layer is responsible for transferring data between networks.
Outgoing packets select the next-hop host and send the data to that host by passing it
the appropriate Link layer details; packets are received by a host, de-encapsulated,
and sent up to the proper Transport layer protocol. In IPv4, both transmit and
receive, IP provides fragmentation or defragmentation of packets based on the MTU;
this is the maximum size of the IP packet.

IP makes no guarantees about packets’ proper arrival; since packet delivery across
diverse networks is inherently unreliable and failure-prone, that burden is with the
endpoints of a communication path, rather than on the network. As discussed in the
previous section, providing service reliability is a function of the Transport layer.
Each packet has a checksum to ensure that the received packet’s information is accu‐
rate, but this layer does not validate data integrity. Source and destination IP
addresses identify packets on the network, which we’ll address next.

Internet Protocol
This almighty packet is defined in RFC 791 and is used for sending data across net‐
works. Figure 1-11 shows the IPv4 header format.
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Figure 1-11. IPv4 header format

Let’s look at the header fields in more detail:

Version

The first header field in the IP packet is the four-bit version field. For IPv4, this is
always equal to four.

Internet Header Length (IHL)
The IPv4 header has a variable size due to the optional 14th field option.

Type of Service

Originally defined as the type of service (ToS), now Differentiated Services Code
Point (DSCP), this field specifies differentiated services. DSC Pallows for routers
and networks to make decisions on packet priority during times of congestion.
Technologies such as Voice over IP use DSCP to ensure calls take precedence
over other traffic.

Total Length

This is the entire packet size in bytes.

Identification

This is the identification field and is used for uniquely identifying the group of
fragments of a single IP datagram.
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Flags

This is used to control or identify fragments. In order from most significant to
least:

• bit 0: Reserved, set to zero
• bit 1: Do not Fragment
• bit 2: More Fragments

Fragment Offset

This specifies the offset of a distinct fragment relative to the first unfragmented
IP packet. The first fragment always has an offset of zero.

Time To Live (TTL)

An 8-bit time to live field helps prevent datagrams from going in circles on a net‐
work.

Protocol

This is used in the data section of the IP packet. IANA has a list of IP protocol
numbers in RFC 790; some well-known protocols are also detailed in Table 1-4.

Table 1-4. IP protocol numbers
Protocol number Protocol name Abbreviation
1 Internet Control Message Protocol ICMP

2 Internet Group Management Protocol IGMP

6 Transmission Control Protocol TCP

17 User Datagram Protocol UDP

41 IPv6 Encapsulation ENCAP

89 Open Shortest Path First OSPF

132 Stream Control Transmission Protocol SCTP

Header Checksum (16-bit)
The IPv4 header checksum field is used for error checking. When a packet
arrives, a router computes the header’s checksum; the router drops the packet if
the two values do not match. The encapsulated protocol must handle errors in
the data field. Both UDP and TCP have checksum fields.

When the router receives a packet, it lowers the TTL field by
one. As a consequence, the router must compute a new
checksum.
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Source address

This is the IPv4 address of the sender of the packet.

The source address may be changed in transit by a network
address translation device; NAT will be discussed later in this
chapter and extensively in Chapter 3.

Destination address

This is the IPv4 address of the receiver of the packet. As with the source address,
a NAT device can change the destination IP address.

Options

The possible options in the header are Copied, Option Class, Option Number,
Option Length, and Option Data.

The crucial component here is the address; it’s how networks are identified. They
simultaneously identify the host on the network and the whole network itself (more
on that in “Getting round the network” on page 35). Understanding how to identify
an IP address is critical for an engineer. First, we will review IPv4 and then under‐
stand the drastic changes in IPv6.

IPv4 addresses are in the dotted-decimal notation for us humans; computers read
them out as binary strings. Figure 1-12 details the dotted-decimal notation and
binary. Each section is 8 bits in length, with four sections, making the complete
length 32 bits. IPv4 addresses have two sections: the first part is the network, and the
second is the host’s unique identifier on the network.

Figure 1-12. IPv4 address

In Example 1-5, we have the output of a computer’s IP address for its network inter‐
face card and we can see its IPv4 address is 192.168.1.2. The IP address also has a 
subnet mask or netmask associated with it to make out what network it is assigned.
The example’s subnet is netmask 0xffffff00 in dotted-decimal, which is
255.255.255.0.
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Example 1-5. IP address

○ → ifconfig en0
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=400<CHANNEL_IO>
 ether 38:f9:d3:bc:8a:51
 inet6 fe80::8f4:bb53:e500:9557%en0 prefixlen 64 secured scopeid 0x6
 inet 192.168.1.2 netmask 0xffffff00 broadcast 192.168.1.255
 nd6 options=201<PERFORMNUD,DAD>
 media: autoselect
 status: active

The subnet brings up the idea of classful addressing. Initially, when an IP address
range was assigned, a range was considered to be the combination of an 8-, 16-, or
24-bit network prefix along with a 24-, 16-, or 8-bit host identifier, respectively. Class
A had 8 bits for the host, Class B 16, and Class C 24. Following that, Class A had 2 to
the power of 16 hosts available, 16,777,216; Class B had 65,536; and Class C had 256.
Each class had a host address, the first one in its boundary, and the last one was des‐
ignated as the broadcast address. Figure 1-13 demonstrates this for us.

There are two other classes, but they are not generally used in IP
addressing. Class D addresses are used for IP multicasting, and
Class E addresses are reserved for experimental use.

Figure 1-13. IP class

Classful addressing was not scalable on the internet, so to help alleviate that scale
issue, we began breaking up the class boundaries using Classless Inter-Domain Rout‐
ing (CIDR) ranges. Instead of having the full 16 million-plus addresses in a class
address range, an internet entity gives only a subsection of that range. This effectively
allows network engineers to move the subnet boundary to anywhere inside the class
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range, giving them more flexibility with CIDR ranges, and helping to scale IP address
ranges.

In Figure 1-14, we can see the breakdown of the 208.130.29.33 IPv4 address and the
hierarchy that it creates. The 208.128.0.0/11 CIDR range is assigned to ARIN from
IANA. ARIN further breaks down the subnet to smaller and smaller subnets for its
purposes, leading to the single host on the network 208.130.29.33/32.

Figure 1-14. CIDR example

The global coordination of the DNS root, IP addressing, and other
internet protocol resources is performed by IANA.

Eventually, though, even this practice of using CIDR to extend the range of an IPv4
address led to an exhaustion of address spaces that could be doled out, leading net‐
work engineers and IETF to develop the IPv6 standard.

In Figure 1-15, we can see that IPv6, unlike IPv4, uses hexadecimal to shorten
addresses for writing purposes. It has similar characteristics to IPv4 in that it has a
host and network prefix.

The most significant difference between IPv4 and IPv6 is the size of the address
space. IPv4 has 32 bits, while IPv6 has 128 bits to produce its addresses. To put that
size differential in perspective, here are those numbers:

IPv4 has 4,294,967,296.

IPv6 has 340,282,366,920,938,463,463,374,607,431,768,211,456.
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1 “Autonomous System (AS) Numbers”. IANA.org. 2018-12-07. Retrieved 2018-12-31.

Figure 1-15. IPv6 address

Now that we understand how an individual host on the network is identified and
what network it belongs to, we will explore how those networks exchange informa‐
tion between themselves using routing protocols.

Getting round the network
Packets are addressed, and data is ready to be sent, but how do our packets get from
our host on our network to the intended hosted on another network halfway around
the world? That is the job of routing. There are several routing protocols, but the 
internet relies on Border Gateway Protocol (BGP), a dynamic routing protocol used
to manage how packets get routed between edge routers on the internet. It is relevant
for us because some Kubernetes network implementations use BGP to route cluster
network traffic between nodes. Between each node on separate networks is a series of
routers.

If we refer to the map of the internet in Figure 1-1, each network on the internet is 
assigned a BGP autonomous system number (ASN) to designate a single administra‐
tive entity or corporation that represents a common and clearly defined routing pol‐
icy on the internet. BGP and ASNs allows network administrators to maintain
control of their internal network routing while announcing and summarizing their
routes on the internet. Table 1-5 lists the available ASNs managed by IANA and other
regional entities.1
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Table 1-5. ASNs available

Number Bits Description Reference
0 16 Reserved RFC 1930, RFC 7607

1–23455 16 Public ASNs

23456 16 Reserved for AS Pool Transition RFC 6793

23457–64495 16 Public ASNs

64496–64511 16 Reserved for use in documentation/sample code RFC 5398

64512–65534 16 Reserved for private use RFC 1930, RFC 6996

65535 16 Reserved RFC 7300

65536–65551 32 Reserved for use in documentation and sample code RFC 4893, RFC 5398

65552–131071 32 Reserved

131072–4199999999 32 Public 32-bit ASNs

4200000000–4294967294 32 Reserved for private use RFC 6996

4294967295 32 Reserved RFC 7300

In Figure 1-16 ,we have five ASNs, 100–500. A host on 130.10.1.200 wants to reach
a host destined on 150.10.2.300. Once the local router or default gateway for the
host 130.10.1.200 receives the packet, it will look for the interface and path for
150.10.2.300 that BGP has determined for that route.

Figure 1-16. BGP routing example
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Based on the routing table in Figure 1-17, the router for AS 100 determined the
packet belongs to AS 300, and the preferred path is out interface 140.10.1.1. Rinse
and repeat on AS 200 until the local router for 150.10.2.300 on AS 300 receives that
packet. The flow here is described in Figure 1-6, which shows the TCP/IP data flow
between networks. A basic understanding of BGP is needed because some container
networking projects, like Calico, use it for routing between nodes; you’ll learn more
about this in Chapter 3.

Figure 1-17. Local routing table

Figure 1-17 displays a local route table. In the route table, we can see the interface
that a packet will be sent out is based on the destination IP address. For example, a
packet destined for 192.168.1.153 will be sent out the link#11 gateway, which is
local to the network, and no routing is needed. 192.168.1.254 is the router on the
network attached to our internet connection. If the destination network is unknown,
it is sent out the default route.

Like all Linux and BSD OSs, you can find more information on net
stat’s man page (man netstat). Apple’s netstat is derived from
the BSD version. More information can be found in the FreeBSD
Handbook.

Routers continuously communicate on the internet, exchanging route information
and informing each other of changes on their respective networks. BGP takes care of
a lot of that data exchange, but network engineers and system administrators can use
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the ICMP protocol and ping command line tools to test connectivity between hosts
and routers.

ICMP

ping is a network utility that uses ICMP for testing connectivity between hosts on the
network. In Example 1-6, we see a successful ping test to 192.168.1.2, with five
packets all returning an ICMP echo reply.

Example 1-6. ICMP echo request

○ → ping 192.168.1.2 -c 5
PING 192.168.1.2 (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=0.052 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.089 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.142 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.050 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.050 ms
--- 192.168.1.2 ping statistics ---
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.050/0.077/0.142/0.036 ms

Example 1-7 shows a failed ping attempt that times out trying to reach host 1.2.3.4.
Routers and administrators will use ping for testing connections, and it is useful in
testing container connectivity as well. You’ll learn more about this in Chapters 2 and
3 as we deploy our minimal Golang web server into a container and a pod.

Example 1-7. ICMP echo request failed

○ → ping 1.2.3.4 -c 4
PING 1.2.3.4 (1.2.3.4): 56 data bytes
Request timeout for icmp_seq 0
Request timeout for icmp_seq 1
Request timeout for icmp_seq 2
--- 1.2.3.4 ping statistics ---
4 packets transmitted, 0 packets received, 100.0% packet loss

As with TCP and UDP, there are headers, data, and options in ICMP packets; they are
reviewed here and shown in Figure 1-18:

Type

ICMP type.

Code

ICMP subtype.
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Checksum

Internet checksum for error checking, calculated from the ICMP header and data
with value 0 substitutes for this field.

Rest of Header (4-byte field)
Contents vary based on the ICMP type and code.

Data

ICMP error messages contain a data section that includes a copy of the entire
IPv4 header.

Figure 1-18. ICMP header

Some consider ICMP a Transport layer protocol since it does not
use TCP or UDP. Per RFC 792, it defines ICMP, which provides
routing, diagnostic, and error functionality for IP. Although ICMP
messages are encapsulated within IP datagrams, ICMP processing
is considered and is typically implemented as part of the IP layer. 
ICMP is IP protocol 1, while TCP is 6, and UDP is 17.

The value identifies control messages in the Type field. The code field gives additional
context information for the message. You can find some standard ICMP type num‐
bers in Table 1-6.

Table 1-6. Common ICMP type numbers

Number Name Reference
0 Echo reply RFC 792

3 Destination unreachable RFC 792

5 Redirect RFC 792

8 Echo RFC 792

Now that our packets know which networks they are being sourced and destined to, it
is time to start physically sending this data request across the network; this is the
responsibility of the Link layer.
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Link Layer
The HTTP request has been broken up into segments, addressed for routing across
the internet, and now all that is left is to send the data across the wire. The Link layer
of the TCP/IP stack comprises two sublayers: the Media Access Control (MAC) sub‐
layer and the Logical Link Control (LLC) sublayer. Together, they perform OSI layers
1 and 2, Data Link and Physical. The Link layer is responsible for connectivity to the
local network. The first sublayer, MAC, is responsible for access to the physical
medium. The LLC layer has the privilege of managing flow control and multiplexing
protocols over the MAC layer to transmit and demultiplexing when receiving, as
shown in Figure 1-19. IEEE standard 802.3, Ethernet, defines the protocols for send‐
ing and receiving frames to encapsulate IP packets. IEEE 802 is the overarching stan‐
dard for LLC (802.2), wireless (802.11), and Ethernet/MAC (802.3).

Figure 1-19. Ethernet demultiplexing example

As with the other PDUs, Ethernet has a header and footers, as shown in Figure 1-20.
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Figure 1-20. Ethernet header and footer

Let’s review these in detail:

Preamble (8 bytes)
Alternating string of ones and zeros indicate to the receiving host that a frame is
incoming.

Destination MAC Address (6 bytes)
MAC destination address; the Ethernet frame recipient.

Source MAC Address (6 bytes)
MAC source address; the Ethernet frame source.

VLAN tag (4 bytes)
Optional 802.1Q tag to differentiate traffic on the network segments.

Ether-type (2 bytes)
Indicates which protocol is encapsulated in the payload of the frame.

Payload (variable length)
The encapsulated IP packet.

Frame Check Sequence (FCS) or Cycle Redundancy Check (CRC) (4 bytes)
The frame check sequence (FCS) is a four-octet cyclic redundancy check (CRC)
that allows the detection of corrupted data within the entire frame as received on
the receiver side. The CRC is part of the Ethernet frame footer.

Figure 1-21 shows that MAC addresses get assigned to network interface hardware at
the time of manufacture. MAC addresses have two parts: the organization unit identi‐
fier (OUI) and the NIC-specific parts.
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Figure 1-21. MAC address

The frame indicates to the recipient of the Network layer packet type. Table 1-7
details the common protocols handled. In Kubernetes, we are mostly interested in
IPv4 and ARP packets. IPv6 has recently been introduced to Kubernetes in the 1.19
release.

Table 1-7. Common EtherType protocols

EtherType Protocol
0x0800 Internet Protocol version 4 (IPv4)

0x0806 Address Resolution Protocol (ARP)

0x8035 Reverse Address Resolution Protocol (RARP)

0x86DD Internet Protocol version 6 (IPv6)

0x88E5 MAC security (IEEE 802.1AE)

0x9100 VLAN-tagged (IEEE 802.1Q) frame with double tagging

When an IP packet reaches its destination network, the destination IP address is
resolved with the Address Resolution Protocol for IPv4 (Neighbor Discovery Proto‐
col in the case of IPv6) into the destination host’s MAC address. The Address Resolu‐
tion Protocol must manage address translation from internet addresses to Link layer
addresses on Ethernet networks. The ARP table is for fast lookups for those known
hosts, so it does not have to send an ARP request for every frame the host wants to
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send out. Example 1-8 shows the output of a local ARP table. All devices on the net‐
work keep a cache of ARP addresses for this purpose.

Example 1-8. ARP table

○ → arp -a
? (192.168.0.1) at bc:a5:11:f1:5d:be on en0 ifscope [ethernet]
? (192.168.0.17) at 38:f9:d3:bc:8a:51 on en0 ifscope permanent [ethernet]
? (192.168.0.255) at ff:ff:ff:ff:ff:ff on en0 ifscope [ethernet]
? (224.0.0.251) at 1:0:5e:0:0:fb on en0 ifscope permanent [ethernet]
? (239.255.255.250) at 1:0:5e:7f:ff:fa on en0 ifscope permanent [ethernet]

Figure 1-22 shows the exchange between hosts on the local network. The browser
makes an HTTP request for a website hosted by the target server. Through DNS, it
determines that the server has the IP address 10.0.0.1. To continue to send the
HTTP request, it also requires the server’s MAC address. First, the requesting com‐
puter consults a cached ARP table to look up 10.0.0.1 for any existing records of the
server’s MAC address. If the MAC address is found, it sends an Ethernet frame with
the destination address of the server’s MAC address, containing the IP packet
addressed to 10.0.0.1 onto the link. If the cache did not produce a hit for 10.0.0.2,
the requesting computer must send a broadcast ARP request message with a destina‐
tion MAC address of FF:FF:FF:FF:FF:FF, which is accepted by all hosts on the local
network, requesting an answer for 10.0.0.1. The server responds with an ARP
response message containing its MAC and IP address. As part of answering the
request, the server may insert an entry for requesting the computer’s MAC address
into its ARP table for future use. The requesting computer receives and caches the
response information in its ARP table and can now send the HTTP packets.

This also brings up a crucial concept on the local networks, broadcast domains. All
packets on the broadcast domain receive all the ARP messages from hosts. In addi‐
tion, all frames are sent all nodes on the broadcast, and the host compares the desti‐
nation MAC address to its own. It will discard frames not destined for itself. As hosts
on the network grow, so too does the broadcast traffic.
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Figure 1-22. ARP request

We can use tcpdump to view all the ARP requests happening on the local network as
in Example 1-9. The packet capture details the ARP packets; the Ethernet type used,
Ethernet (len 6); and the higher-level protocol, IPv4. It also includes who is
requesting the MAC address of the IP address, Request who-has 192.168.0.1 tell
192.168.0.12.

Example 1-9. ARP tcpdump

○ → sudo tcpdump -i en0 arp -vvv
tcpdump: listening on en0, link-type EN10MB (Ethernet), capture size 262144 bytes
17:26:25.906401 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:27.954867 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:29.797714 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:31.845838 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:33.897299 ARP, Ethernet (len 6), IPv4 (len 4),

44 | Chapter 1: Networking Introduction



Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:35.942221 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:37.785585 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:39.628958 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.13, length 28
17:26:39.833697 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:41.881322 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:43.929320 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:45.977691 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
17:26:47.820597 ARP, Ethernet (len 6), IPv4 (len 4),
Request who-has 192.168.0.1 tell 192.168.0.12, length 46
^C
13 packets captured
233 packets received by filter
0 packets dropped by kernel

To further segment the layer 2 network, network engineers can use virtual local area
network (VLAN) tagging. Inside the Ethernet frame header is an optional VLAN tag
that differentiates traffic on the LAN. It is useful to use VLANs to break up LANs and
manage networks on the same switch or different ones across the network campus.
Routers between VLANs filter broadcast traffic, enable network security, and alleviate
network congestion. They are useful to the network administrator for those purposes,
but Kubernetes network administrators can use the extended version of the VLAN
technology known as a virtual extensible LAN (VXLAN).

Figure 1-23 shows how a VXLAN is an extension of a VLAN that allows network
engineers to encapsulate layer 2 frames into layer 4 UDP packets. A VXLAN increa‐
ses scalability up to 16 million logical networks and allows for layer 2 adjacency
across IP networks. This technology is used in Kubernetes networks to produce over‐
lay networks, which you’ll learn more about in later chapters.

Figure 1-23. VXLAN packet
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2 In the movie Ender’s Game, they use the Ansible network to communicate across the galaxy instantly. Philotic
Parallax Instantaneous Communicator is the official name of the Ansible network.

Ethernet also details the specifications for the medium to transmit frames on, such as
twisted pair, coaxial cable, optical fiber, wireless, or other transmission media yet to
be invented, such as the gamma-ray network that powers the Philotic Parallax Instan‐
taneous Communicator.2 Ethernet even defines the encoding and signaling protocols
used on the wire; this is out of scope for our proposes.

The Link layer has multiple other protocols involved from a network perspective.
Like the layers discussed previously, we have only touched the surface of the Link
layer. We constrained this book to those details needed for a base understanding of
the Link layer for the Kubernetes networking model.

Revisiting Our Web Server
Our journey through all the layers of TCP/IP is complete. Figure 1-24 outlines all the
headers and footers each layer of the TCP/IP model produces to send data across the
internet.

Figure 1-24. TCP/IP PDU full view

Let’s review the journey and remind ourselves again what is going on now that we
understand each layer in detail. Example 1-10 shows our web server again, and
Example 1-11 shows the cURL request for it from earlier in the chapter.
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Example 1-10. Minimal web server in Go

package main

import (
 "fmt"
 "net/http"
)

func hello(w http.ResponseWriter, _ *http.Request) {
 fmt.Fprintf(w, "Hello")
}

func main() {
 http.HandleFunc("/", hello)
 http.ListenAndServe("0.0.0.0:8080", nil)
}

Example 1-11. Client request

○ → curl localhost:8080 -vvv
*   Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080
> GET / HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.64.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Sat, 25 Jul 2020 14:57:46 GMT
< Content-Length: 5
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host localhost left intact
Hello* Closing connection 0

We begin with the web server waiting for a connection in Example 1-10. cURL
requests the HTTP server at 0.0.0.0 on port 8080. cURL determines the IP address
and port number from the URL and proceeds to establish a TCP connection to the
server. Once the connection is set up, via a TCP handshake, cURL sends the HTTP
request. When the web server starts up, a socket of 8080 is created on the HTTP
server, which matches TCP port 8080; the same is done on the cURL client side with
a random port number. Next, this information is sent to the Network layer, where the
source and destination IP addresses are attached to the packet’s IP header. At the cli‐
ent’s Data Link layer, the source MAC address of the NIC is added to the Ethernet
frame. If the destination MAC address is unknown, an ARP request is made to find it.
Next, the NIC is used to transmit the Ethernet frames to the web server.
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When the web server receives the request, it creates packets of data that contain the
HTTP response. The packets are sent back to the cURL process by routing them
through the internet using the source IP address on the request packet. Once received
by the cURL process, the packet is sent from the device to the drivers. At the Data
Link layer, the MAC address is removed. At the Network Protocol layer, the IP
address is verified and then removed from the packet. For this reason, if an applica‐
tion requires access to the client IP, it needs to be stored at the Application layer; the
best example here is in HTTP requests and the X-Forwarded-For header. Now the
socket is determined from the TCP data and removed. The packet is then forwarded
to the client application that creates that socket. The client reads it and processes the
response data. In this case, the socket ID was random, corresponding to the cURL
process. All packets are sent to cURL and pieced together into one HTTP response. If
we were to use the -O output option, it would have been saved to a file; otherwise,
cURL outputs the response to the terminal’s standard out.

Whew, that is a mouthful, 50 pages and 50 years of networking condensed into two
paragraphs! The basics of networking we have reviewed are just the beginning but are
required knowledge if you want to run Kubernetes clusters and networks at scale.

Conclusion
The HTTP transactions modeled in this chapter happen every millisecond, globally,
all day on the internet and data center network. This is the type of scale that the
Kubernetes networks’ APIs help developers abstract away into simple YAML. Under‐
standing the scale of the problem is our first in step in mastering the management of
a Kubernetes network. By taking our simple example of the Golang web server and
learning the first principles of networking, you can begin to wrangle the packets flow‐
ing into and out of your clusters.

So far, we have covered the following:

• History of networking
• OSI model
• TCP/IP

Throughout this chapter, we discussed many things related to networks but only
those needed to learn about using the Kubernetes abstractions. There are several
O’Reilly books about TCP/IP; TCP/IP Network Administration by Craig Hunt
(O’Reilly) is a great in-depth read on all aspects of TCP.

We discussed how networking evolved, walked through the OSI model, translated it
to the TCP/IP stack, and with that stack completed an example HTTP request. In the
next chapter, we will walk through how this is implemented for the client and server
with Linux networking.
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CHAPTER 2

Linux Networking

To understand the implementation of networking in Kubernetes, we will need to
understand the fundamentals of networking in Linux. Ultimately, Kubernetes is a
complex management tool for Linux (or Windows!) machines, and this is hard to
ignore while working with the Kubernetes network stack. This chapter will provide
an overview of the Linux networking stack, with a focus on areas of note in Kuber‐
netes. If you are highly familiar with Linux networking and network management,
you may want to skim or skip this chapter.

This chapter introduces many Linux programs. Manual, or man,
pages, accessible with man <program>, will provide more detail.

Basics
Let’s revisit our Go web server, which we used in Chapter 1. This web server listens
on port 8080 and returns “Hello” for HTTP requests to / (see Example 2-1).

Example 2-1. Minimal web server in Go

package main

import (
 "fmt"
 "net/http"
)

func hello(w http.ResponseWriter, _ *http.Request) {
 fmt.Fprintf(w, "Hello")
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}

func main() {
 http.HandleFunc("/", hello)
 http.ListenAndServe("0.0.0.0:8080", nil)
}

Ports 1–1023 (also known as well-known ports) require root per‐
mission to bind to.
Programs should always be given the least permissions necessary to
function, which means that a typical web service should not be run
as the root user. Because of this, many programs will listen on port
1024 or higher (in particular, port 8080 is a common choice for
HTTP services). When possible, listen on a nonprivileged port, and
use infrastructure redirects (load balancer forwarding, Kubernetes
services, etc.) to forward an externally visible privileged port to a
program listening on a nonprivileged port.
This way, an attacker exploiting a possible vulnerability in your ser‐
vice will not have overly broad permissions available to them.

Suppose this program is running on a Linux server machine and an external client
makes a request to /. What happens on the server? To start off, our program needs to
listen to an address and port. Our program creates a socket for that address and port
and binds to it. The socket will receive requests addressed to both the specified
address and port - 8080 with any IP address in our case.

0.0.0.0 in IPv4 and [::] in IPv6 are wildcard addresses. They
match all addresses of their respective protocol and, as such, listen
on all available IP addresses when used for a socket binding.
This is useful to expose a service, without prior knowledge of what
IP addresses the machines running it will have. Most network-
exposed services bind this way.

There are multiple ways to inspect sockets. For example, ls -lah /proc/<server
proc>/fd will list the sockets. We will discuss some programs that can inspect sockets
at the end of this chapter.

The kernel maps a given packet to a specific connection and uses an internal state
machine to manage the connection state. Like sockets, connections can be inspected
through various tools, which we will discuss later in this chapter. Linux represents
each connection with a file. Accepting a connection entails a notification from the
kernel to our program, which is then able to stream content to and from the file.

50 | Chapter 2: Linux Networking



Going back to our Golang web server, we can use strace to show what the server is
doing:

$ strace ./main
execve("./main", ["./main"], 0x7ebf2700 /* 21 vars */) = 0
brk(NULL)                               = 0x78e000
uname({sysname="Linux", nodename="raspberrypi", ...}) = 0
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)
= 0x76f1d000
[Content cut]

Because strace captures all the system calls made by our server, there is a lot of out‐
put. Let’s reduce it somewhat to the relevant network syscalls. Key points are high‐
lighted, as the Go HTTP server performs many syscalls during startup:

openat(AT_FDCWD, "/proc/sys/net/core/somaxconn",
O_RDONLY|O_LARGEFILE|O_CLOEXEC) = 3
epoll_create1(EPOLL_CLOEXEC)            = 4 
epoll_ctl(4, EPOLL_CTL_ADD, 3, {EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLET,
    {u32=1714573248, u64=1714573248}}) = 0
fcntl(3, F_GETFL)                       = 0x20000 (flags O_RDONLY|O_LARGEFILE)
fcntl(3, F_SETFL, O_RDONLY|O_NONBLOCK|O_LARGEFILE) = 0
read(3, "128\n", 65536)                 = 4
read(3, "", 65532)                      = 0
epoll_ctl(4, EPOLL_CTL_DEL, 3, 0x20245b0) = 0
close(3)                                = 0
socket(AF_INET, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, IPPROTO_TCP) = 3
close(3)                                = 0
socket(AF_INET6, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, IPPROTO_TCP) = 3 
setsockopt(3, SOL_IPV6, IPV6_V6ONLY, [1], 4) = 0 
bind(3, {sa_family=AF_INET6, sin6_port=htons(0),
inet_pton(AF_INET6, "::1", &sin6_addr),
    sin6_flowinfo=htonl(0), sin6_scope_id=0}, 28) = 0
socket(AF_INET6, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, IPPROTO_TCP) = 5
setsockopt(5, SOL_IPV6, IPV6_V6ONLY, [0], 4) = 0
bind(5, {sa_family=AF_INET6,
sin6_port=htons(0), inet_pton(AF_INET6,
    "::ffff:127.0.0.1", &sin6_addr), sin6_flowinfo=htonl(0),
sin6_scope_id=0}, 28) = 0
close(5)                                = 0
close(3)                                = 0
socket(AF_INET6, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, IPPROTO_IP) = 3
setsockopt(3, SOL_IPV6, IPV6_V6ONLY, [0], 4) = 0
setsockopt(3, SOL_SOCKET, SO_BROADCAST, [1], 4) = 0
setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
bind(3, {sa_family=AF_INET6, sin6_port=htons(8080),
inet_pton(AF_INET6, "::", &sin6_addr),
    sin6_flowinfo=htonl(0), sin6_scope_id=0}, 28) = 0 
listen(3, 128)                          = 0
epoll_ctl(4, EPOLL_CTL_ADD, 3,
{EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLET, {u32=1714573248,
    u64=1714573248}}) = 0
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getsockname(3, {sa_family=AF_INET6, sin6_port=htons(8080),

inet_pton(AF_INET6, "::", &sin6_addr), sin6_flowinfo=htonl(0),
sin6_scope_id=0},
    [112->28]) = 0
accept4(3, 0x2032d70, [112], SOCK_CLOEXEC|SOCK_NONBLOCK) = -1 EAGAIN
    (Resource temporarily unavailable)
epoll_wait(4, [], 128, 0)               = 0
epoll_wait(4, 

Open a file descriptor.

Create a TCP socket for IPv6 connections.

Disable IPV6_V6ONLY on the socket. Now, it can listen on IPv4 and IPv6.

Bind the IPv6 socket to listen on port 8080 (all addresses).

Wait for a request.

Once the server has started, we see the output from strace pause on epoll_wait.

At this point, the server is listening on its socket and waiting for the kernel to notify it
about packets. When we make a request to our listening server, we see the “Hello”
message:

$ curl <ip>:8080/
Hello

If you are trying to debug the fundamentals of a web server with
strace, you will probably not want to use a web browser. Addi‐
tional requests or metadata sent to the server may result in addi‐
tional work for the server, or the browser may not make expected
requests. For example, many browsers try to request a favicon file
automatically. They will also attempt to cache files, reuse connec‐
tions, and do other things that make it harder to predict the exact
network interaction. When simple or minimal reproduction mat‐
ters, try using a tool like curl or telnet.

In strace, we see the following from our server process:

[{EPOLLIN, {u32=1714573248, u64=1714573248}}], 128, -1) = 1
accept4(3, {sa_family=AF_INET6, sin6_port=htons(54202), inet_pton(AF_INET6,
    "::ffff:10.0.0.57", &sin6_addr), sin6_flowinfo=htonl(0), sin6_scope_id=0},
    [112->28], SOCK_CLOEXEC|SOCK_NONBLOCK) = 5
epoll_ctl(4, EPOLL_CTL_ADD, 5, {EPOLLIN|EPOLLOUT|EPOLLRDHUP|EPOLLET,
    {u32=1714573120, u64=1714573120}}) = 0
getsockname(5, {sa_family=AF_INET6, sin6_port=htons(8080),
    inet_pton(AF_INET6, "::ffff:10.0.0.30", &sin6_addr), sin6_flowinfo=htonl(0),
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    sin6_scope_id=0}, [112->28]) = 0
setsockopt(5, SOL_TCP, TCP_NODELAY, [1], 4) = 0
setsockopt(5, SOL_SOCKET, SO_KEEPALIVE, [1], 4) = 0
setsockopt(5, SOL_TCP, TCP_KEEPINTVL, [180], 4) = 0
setsockopt(5, SOL_TCP, TCP_KEEPIDLE, [180], 4) = 0
accept4(3, 0x2032d70, [112], SOCK_CLOEXEC|SOCK_NONBLOCK) = -1 EAGAIN
    (Resource temporarily unavailable)

After inspecting the socket, our server writes response data (“Hello” wrapped in the
HTTP protocol) to the file descriptor. From there, the Linux kernel (and some other
userspace systems) translates the request into packets and transmits those packets
back to our cURL client.

To summarize what the server is doing when it receives a request:

1. Epoll returns and causes the program to resume.
2. The server sees a connection from ::ffff:10.0.0.57, the client IP address in

this example.
3. The server inspects the socket.
4. The server changes KEEPALIVE options: it turns KEEPALIVE on, and sets a 180-

second interval between KEEPALIVE probes.

This is a bird’s-eye view of networking in Linux, from an application developer’s point
of view. There’s a lot more going on to make everything work. We’ll look in more
detail at parts of the networking stack that are particularly relevant for Kubernetes
users.

The Network Interface
Computers use a network interface to communicate with the outside world. Network
interfaces can be physical (e.g., an Ethernet network controller) or virtual. Virtual
network interfaces do not correspond to physical hardware; they are abstract inter‐
faces provided by the host or hypervisor.

IP addresses are assigned to network interfaces. A typical interface may have one IPv4
address and one IPv6 address, but multiple addresses can be assigned to the same
interface.

Linux itself has a concept of a network interface, which can be physical (such as an
Ethernet card and port) or virtual. If you run ifconfig, you will see a list of all net‐
work interfaces and their configurations (including IP addresses).

The loopback interface is a special interface for same-host communication. 127.0.0.1
is the standard IP address for the loopback interface. Packets sent to the loopback
interface will not leave the host, and processes listening on 127.0.0.1 will be
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accessible only to other processes on the same host. Note that making a process listen
on 127.0.0.1 is not a security boundary. CVE-2020-8558 was a past Kubernetes vul‐
nerability, in which kube-proxy rules allowed some remote systems to reach
127.0.0.1. The loopback interface is commonly abbreviated as lo.

The ip command can also be used to inspect network interfaces.

Let’s look at a typical ifconfig output; see Example 2-2.

Example 2-2. Output from ifconfig on a machine with one pysical network interface
(ens4), and the loopback interface

$ ifconfig
ens4: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1460
        inet 10.138.0.4  netmask 255.255.255.255  broadcast 0.0.0.0
        inet6 fe80::4001:aff:fe8a:4  prefixlen 64  scopeid 0x20<link>
        ether 42:01:0a:8a:00:04  txqueuelen 1000  (Ethernet)
        RX packets 5896679  bytes 504372582 (504.3 MB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 9962136  bytes 1850543741 (1.8 GB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536
        inet 127.0.0.1  netmask 255.0.0.0
        inet6 ::1  prefixlen 128  scopeid 0x10<host>
        loop  txqueuelen 1000  (Local Loopback)
        RX packets 352  bytes 33742 (33.7 KB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 352  bytes 33742 (33.7 KB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

Container runtimes create a virtual network interface for each pod on a host, so the
list would be much longer on a typical Kubernetes node. We’ll cover container net‐
working in more detail in Chapter 3.

The Bridge Interface
The bridge interface (shown in Figure 2-1) allows system administrators to create
multiple layer 2 networks on a single host. In other words, the bridge functions like a
network switch between network interfaces on a host, seamlessly connecting them.
Bridges allow pods, with their individual network interfaces, to interact with the
broader network via the node’s network interface.
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Figure 2-1. Bridge interface

You can read more about Linux bridging in the documentation.

In Example 2-3, we demonstrate how to create a bridge device named br0 and attach
a virtual Ethernet (veth) device, veth, and a physical device, eth0, using ip.

Example 2-3. Creating bridge interface and connecting veth pair

# # Add a new bridge interface named br0.
# ip link add br0 type bridge
# # Attach eth0 to our bridge.
# ip link set eth0 master br0
# # Attach veth to our bridge.
# ip link set veth master br0

Bridges can also be managed and created using the brctl command. Example 2-4
shows some options available with brctl.
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Example 2-4. brctl options

$ brctl
$ commands:
        addbr           <bridge>                add bridge
        delbr           <bridge>                delete bridge
        addif           <bridge> <device>       add interface to bridge
        delif           <bridge> <device>       delete interface from bridge
        setageing       <bridge> <time>         set ageing time
        setbridgeprio   <bridge> <prio>         set bridge priority
        setfd           <bridge> <time>         set bridge forward delay
        sethello        <bridge> <time>         set hello time
        setmaxage       <bridge> <time>         set max message age
        setpathcost     <bridge> <port> <cost>  set path cost
        setportprio     <bridge> <port> <prio>  set port priority
        show                                    show a list of bridges
        showmacs        <bridge>                show a list of mac addrs
        showstp         <bridge>                show bridge stp info
        stp             <bridge> <state>        turn stp on/off

The veth device is a local Ethernet tunnel. Veth devices are created in pairs, as shown
in Figure 2-1, where the pod sees an eth0 interface from the veth. Packets transmitted
on one device in the pair are immediately received on the other device. When either
device is down, the link state of the pair is down. Adding a bridge to Linux can be
done with using the brctl commands or ip. Use a veth configuration when name‐
spaces need to communicate to the main host namespace or between each other.

Example 2-5 shows how to set up a veth configuration.

Example 2-5. Veth creation

# ip netns add net1
# ip netns add net2
# ip link add veth1 netns net1 type veth peer name veth2 netns net2

In Example 2-5, we show the steps to create two network namespaces (not to be con‐
fused with Kubernetes namespaces), net1 and net2, and a pair of veth devices, with
veth1 assigned to namespace net1 and veth2 assigned to namespace net2. These two
namespaces are connected with this veth pair. Assign a pair of IP addresses, and you
can ping and communicate between the two namespaces.

Kubernetes uses this in concert with the CNI project to manage container network
namespaces, interfaces, and IP addresses. We will cover more of this in Chapter 3.
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Packet Handling in the Kernel
The Linux kernel is responsible for translating between packets, and a coherent
stream of data for programs. In particular, we will look at how the kernel handles
connections because routing and firewalling, key things in Kubernetes, rely heavily
on Linux’s underlying packet management.

Netfilter
Netfilter, included in Linux since 2.3, is a critical component of packet handling. Net‐
filter is a framework of kernel hooks, which allow userspace programs to handle
packets on behalf of the kernel. In short, a program registers to a specific Netfilter
hook, and the kernel calls that program on applicable packets. That program could
tell the kernel to do something with the packet (like drop it), or it could send back a
modified packet to the kernel. With this, developers can build normal programs that
run in userspace and handle packets. Netfilter was created jointly with iptables, to
separate kernel and userspace code.

netfilter.org contains some excellent documentation on the design
and use of both Netfilter and iptables.

Netfilter has five hooks, shown in Table 2-1.

Netfilter triggers each hook under specific stages in a packet’s journey through the
kernel. Understanding Netfilter’s hooks is key to understanding iptables later in this
chapter, as iptables directly maps its concept of chains to Netfilter hooks.

Table 2-1. Netfilter hooks

Netfilter hook Iptables chain
name

Description

NF_IP_PRE_ROUTING PREROUTING Triggers when a packet arrives from an external system.

NF_IP_LOCAL_IN INPUT Triggers when a packet’s destination IP address matches this machine.

NF_IP_FORWARD NAT Triggers for packets where neither source nor destination matches the
machine’s IP addresses (in other words, packets that this machine is routing
on behalf of other machines).

NF_IP_LOCAL_OUT OUTPUT Triggers when a packet, originating from the machine, is leaving the machine.

NF_IP_POST_ROUTING POSTROUTING Triggers when any packet (regardless of origin) is leaving the machine.
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Netfilter triggers each hook during a specific phase of packet handling, and under
specific conditions, we can visualize Netfilter hooks with a flow diagram, as shown in
Figure 2-2.

Figure 2-2. The possible flows of a packet through Netfilter hooks

We can infer from our flow diagram that only certain permutations of Netfilter hook
calls are possible for any given packet. For example, a packet originating from a local
process will always trigger NF_IP_LOCAL_OUT hooks and then NF_IP_POST_ROUTING
hooks. In particular, the flow of Netfilter hooks for a packet depends on two things: if
the packet source is the host and if the packet destination is the host. Note that if a
process sends a packet destined for the same host, it triggers the NF_IP_LOCAL_OUT
and then the NF_IP_POST_ROUTING hooks before “reentering” the system and trigger‐
ing the NF_IP_PRE_ROUTING and NF_IP_LOCAL_IN hooks.

In some systems, it is possible to spoof such a packet by writing a fake source address
(i.e., spoofing that a packet has a source and destination address of 127.0.0.1). Linux
will normally filter such a packet when it arrives at an external interface. More
broadly, Linux filters packets when a packet arrives at an interface and the packet’s
source address does not exist on that network. A packet with an “impossible” source
IP address is called a Martian packet. It is possible to disable filtering of Martian
packets in Linux. However, doing so poses substantial risk if any services on the host
assume that traffic from localhost is “more trustworthy” than external traffic. This
can be a common assumption, such as when exposing an API or database to the host
without strong authentication.
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Kubernetes has had at least one CVE, CVE-2020-8558, in which
packets from another host, with the source IP address falsely set to
127.0.0.1, could access ports that should be accessible only locally.
Among other things, this means that if a node in the Kubernetes
control plane ran kube-proxy, other machines on the node’s net‐
work could use “trust authentication” to connect to the API server,
effectively owning the cluster.
This was not technically a case of Martian packets not being fil‐
tered, as offending packets would come from the loopback device,
which is on the same network as 127.0.0.1. You can read the
reported issue on GitHub.

Table 2-2 shows the Netfilter hook order for various packet sources and destinations.

Table 2-2. Key netfilter packet flows

Packet source Packet destination Hooks (in order)
Local machine Local machine NF_IP_LOCAL_OUT, NF_IP_LOCAL_IN

Local machine External machine NF_IP_LOCAL_OUT, NF_IP_POST_ROUTING

External machine Local machine NF_IP_PRE_ROUTING, NF_IP_LOCAL_IN

External machine External machine NF_IP_PRE_ROUTING, NF_IP_FORWARD, NF_IP_POST_ROUTING

Note that packets from the machine to itself will trigger NF_IP_LOCAL_OUT and
NF_IP_POST_ROUTING and then “leave” the network interface. They will “reenter” and
be treated like packets from any other source.

Network address translation (NAT) only impacts local routing decisions in the
NF_IP_PRE_ROUTING and NF_IP_LOCAL_OUT hooks (e.g., the kernel makes no routing
decisions after a packet reaches the NF_IP_LOCAL_IN hook). We see this reflected in
the design of iptables, where source and destination NAT can be performed only in
specific hooks/chains.

Programs can register a hook by calling NF_REGISTER_NET_HOOK (NF_REGISTER_HOOK
prior to Linux 4.13) with a handling function. The hook will be called every time a
packet matches. This is how programs like iptables integrate with Netfilter, though
you will likely never need to do this yourself.
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There are several actions that a Netfilter hook can trigger, based on the return value:

Accept
Continue packet handling.

Drop
Drop the packet, without further processing.

Queue
Pass the packet to a userspace program.

Stolen
Doesn’t execute further hooks, and allows the userspace program to take owner‐
ship of the packet.

Repeat
Make the packet “reenter” the hook and be reprocessed.

Hooks can also return mutated packets. This allows programs to do things such as
reroute or masquerade packets, adjust packet TTLs, etc.

Conntrack
Conntrack is a component of Netfilter used to track the state of connections to (and
from) the machine. Connection tracking directly associates packets with a particular
connection. Without connection tracking, the flow of packets is much more opaque.
Conntrack can be a liability or a valuable tool, or both, depending on how it is used.
In general, Conntrack is important on systems that handle firewalling or NAT.

Connection tracking allows firewalls to distinguish between responses and arbitrary
packets. A firewall can be configured to allow inbound packets that are part of an
existing connection but disallow inbound packets that are not part of a connection.
To give an example, a program could be allowed to make an outbound connection
and perform an HTTP request, without the remote server being otherwise able to
send data or initiate connections inbound.

NAT relies on Conntrack to function. iptables exposes NAT as two types: SNAT
(source NAT, where iptables rewrites the source address) and DNAT (destination
NAT, where iptables rewrites the destination address). NAT is extremely common;
the odds are overwhelming that your home router uses SNAT and DNAT to fan traf‐
fic between your public IPv4 address and the local address of each device on the net‐
work. With connection tracking, packets are automatically associated with their
connection and easily modified with the same SNAT/DNAT change. This enables
consistent routing decisions, such as “pinning” a connection in a load balancer to a
specific backend or machine. The latter example is highly relevant in Kubernetes, due
to kube-proxy’s implementation of service load balancing via iptables. Without
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connection tracking, every packet would need to be deterministically remapped to the
same destination, which isn’t doable (suppose the list of possible destinations could
change…).

Conntrack identifies connections by a tuple, composed of source address, source
port, destination address, destination port, and L4 protocol. These five pieces of
information are the minimal identifiers needed to identify any given L4 connection.
All L4 connections have an address and port on each side of the connection; after all,
the internet uses addresses for routing, and computers use port numbers for applica‐
tion mapping. The final piece, the L4 protocol, is present because a program will bind
to a port in TCP or UDP mode (and binding to one does not preclude binding to the
other). Conntrack refers to these connections as flows. A flow contains metadata
about the connection and its state.

Conntrack stores flows in a hash table, shown in Figure 2-3, using the connection
tuple as a key. The size of the keyspace is configurable. A larger keyspace requires
more memory to hold the underlying array but will result in fewer flows hashing to
the same key and being chained in a linked list, leading to faster flow lookup times.
The maximum number of flows is also configurable. A severe issue that can happen is
when Conntrack runs out of space for connection tracking, and new connections
cannot be made. There are other configuration options too, such as the timeout for a
connection. On a typical system, default settings will suffice. However, a system that
experiences a huge number of connections will run out of space. If your host runs
directly exposed to the internet, overwhelming Conntrack with short-lived or incom‐
plete connections is an easy way to cause a denial of service (DOS).

Figure 2-3. The structure of Conntrack flows
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Conntrack’s max size is normally set in /proc/sys/net/nf_conntrack_max, and the
hash table size is normally set in /sys/module/nf_conntrack/parameters/hashsize.

Conntrack entries contain a connection state, which is one of four states. It is impor‐
tant to note that, as a layer 3 (Network layer) tool, Conntrack states are distinct from
layer 4 (Protocol layer) states. Table 2-3 details the four states.

Table 2-3. Conntrack states

State Description Example
NEW A valid packet is sent or received, with no response seen. TCP SYN received.

ESTABLISHED Packets observed in both directions. TCP SYN received, and TCP SYN/ACK sent.

RELATED An additional connection is opened, where metadata indicates
that it is “related” to an original connection. Related connection
handling is complex.

An FTP program, with an ESTABLISHED
connection, opens additional data
connections.

INVALID The packet itself is invalid, or does not properly match another
Conntrack connection state.

TCP RST received, with no prior
connection.

Although Conntrack is built into the kernel, it may not be active on your system. Cer‐
tain kernel modules must be loaded, and you must have relevant iptables rules
(essentially, Conntrack is normally not active if nothing needs it to be). Conntrack
requires the kernel module nf_conntrack_ipv4 to be active. lsmod | grep nf_conn
track will show if the module is loaded, and sudo modprobe nf_conntrack will load
it. You may also need to install the conntrack command-line interface (CLI) in order
to view Conntrack’s state.

When Conntrack is active, conntrack -L shows all current flows. Additional Conn‐
track flags will filter which flows are shown.

Let’s look at the anatomy of a Conntrack flow, as displayed here:

tcp      6 431999 ESTABLISHED src=10.0.0.2 dst=10.0.0.1
sport=22 dport=49431 src=10.0.0.1 dst=10.0.0.2 sport=49431 dport=22 [ASSURED]
mark=0 use=1

<protocol> <protocol number> <flow TTL> [flow state>]
<source ip> <dest ip> <source port> <dest port> [] <expected return packet>

The expected return packet is of the form <source ip> <dest ip> <source port>
<dest port>. This is the identifier that we expect to see when the remote system
sends a packet. Note that in our example, the source and destination values are in
reverse for address and ports. This is often, but not always, the case. For example, if a
machine is behind a router, packets destined to that machine will be addressed to the
router, whereas packets from the machine will have the machine address, not the
router address, as the source.

62 | Chapter 2: Linux Networking



In the previous example from machine 10.0.0.2, 10.0.0.1 has established a TCP
connection from port 49431 to port 22 on 10.0.0.2. You may recognize this as being
an SSH connection, although Conntrack is unable to show application-level behavior.

Tools like grep can be useful for examining Conntrack state and ad hoc statistics:

grep ESTABLISHED /proc/net/ip_conntrack | wc -l

Routing
When handling any packet, the kernel must decide where to send that packet. In
most cases, the destination machine will not be within the same network. For exam‐
ple, suppose you are attempting to connect to 1.2.3.4 from your personal computer.
1.2.3.4 is not on your network; the best your computer can do is pass it to another
host that is closer to being able to reach 1.2.3.4. The route table serves this purpose
by mapping known subnets to a gateway IP address and interface. You can list known
routes with route (or route -n to show raw IP addresses instead of hostnames). A
typical machine will have a route for the local network and a route for 0.0.0.0/0.
Recall that subnets can be expressed as a CIDR (e.g., 10.0.0.0/24) or an IP address
and a mask (e.g., 10.0.0.0 and 255.255.255.0).

This is a typical routing table for a machine on a local network with access to the
internet:

# route
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
0.0.0.0         10.0.0.1        0.0.0.0         UG    303    0        0 eth0
10.0.0.0        0.0.0.0         255.255.255.0   U     303    0        0 eth0

In the previous example, a request to 1.2.3.4 would be sent to 10.0.0.1, on the eth0
interface, because 1.2.3.4 is in the subnet described by the first rule (0.0.0.0/0) and
not in the subnet described by the second rule (10.0.0.0/24). Subnets are specified
by the destination and genmask values.

Linux prefers to route packets by specificity (how “small” a matching subnet is) and
then by weight (“metric” in route output). Given our example, a packet addressed to
10.0.0.1 will always be sent to gateway 0.0.0.0 because that route matches a smaller
set of addresses. If we had two routes with the same specificity, then the route with a
lower metric wiould be preferred.

Some CNI plugins make heavy use of the route table.

Now that we’ve covered some key concepts in how the Linux kernel handles packets,
we can look at how higher-level packet and connection routing works.
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High-Level Routing
Linux has complex packet management abilities. Such tools allow Linux users to cre‐
ate firewalls, log traffic, route packets, and even implement load balancing. Kuber‐
netes makes use of some of these tools to handle node and pod connectivity, as well as
manage Kubernetes services. In this book, we will cover the three tools that are most
commonly seen in Kubernetes. All Kubernetes setups will make some use of ipta
bles, but there are many ways that services can be managed. We will also cover IPVS
(which has built-in support in kube-proxy), and eBPF, which is used by Cilium (a
kube-proxy alternative).

We will reference this section in Chapter 4, when we cover services and kube-proxy.

iptables
iptables is staple of Linux sysadmins and has been for many years. iptables can be
used to create firewalls and audit logs, mutate and reroute packets, and even imple‐
ment crude connection fan-out. iptables uses Netfilter, which allows iptables to
intercept and mutate packets.

iptables rules can become extremely complex. There are many tools that provide a
simpler interface for managing iptables rules; for example, firewalls like ufw and
firewalld. Kubernetes components (specifically, kubelet and kube-proxy) generate
iptables rules in this fashion. Understanding iptables is important to understand
access and routing for pods and nodes in most clusters.

Most Linux distributions are replacing iptables with nftables, a
similar but more performant tool built atop Netfilter. Some distros
already ship with a version of iptables that is powered by
nftables.
Kubernetes has many known issues with the iptables/nftables
transition. We highly recommend not using a nftables-backed
version of iptables for the foreseeable future.

There are three key concepts in iptables: tables, chains, and rules. They are consid‐
ered hierarchical in nature: a table contains chains, and a chain contains rules.

Tables organize rules according to the type of effect they have. iptables has a broad
range of functionality, which tables group together. The three most commonly appli‐
cable tables are: Filter (for firewall-related rules), NAT (for NAT-related rules), and
Mangle (for non-NAT packet-mutating rules). iptables executes tables in a specific
order, which we’ll cover later.
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Chains contain a list of rules. When a packet executes a chain, the rules in the chain
are evaluated in order. Chains exist within a table and organize rules according to
Netfilter hooks. There are five built-in, top-level chains, each of which corresponds to
a Netfilter hook (recall that Netfilter was designed jointly with iptables). Therefore,
the choice of which chain to insert a rule dictates if/when the rule will be evaluated
for a given packet.

Rules are a combination condition and action (referred to as a target). For example,
“if a packet is addressed to port 22, drop it.” iptables evaluates individual packets,
although chains and tables dictate which packets a rule will be evaluated against.

The specifics of table → chain → target execution are complex, and there is no end of
fiendish diagrams available to describe the full state machine. Next, we’ll examine
each portion in more detail.

It may help to refer to earlier material as you progress through this
section. The designs of tables, chains, and rules are tightly inter‐
twined, and it is hard to properly understand one without under‐
standing the others.

iptables tables

A table in iptables maps to a particular capability set, where each table is “responsi‐
ble” for a specific type of action. In more concrete terms, a table can contain only spe‐
cific target types, and many target types can be used only in specific tables. iptables
has five tables, which are listed in Table 2-4.

Table 2-4. iptables tables

Table Purpose
Filter The Filter table handles acceptance and rejection of packets.

NAT The NAT table is used to modify the source or destination IP addresses.

Mangle The Mangle table can perform general-purpose editing of packet headers, but it is not intended for NAT. It can also
“mark” the packet with iptables-only metadata.

Raw The Raw table allows for packet mutation before connection tracking and other tables are handled. Its most
common use is to disable connection tracking for some packets.

Security SELinux uses the Security table for packet handling. It is not applicable on a machine that is not using SELinux.

We will not discuss the Security table in more detail in this book; however, if you use
SELinux, you should be aware of its use.

iptables executes tables in a particular order: Raw, Mangle, NAT, Filter. However,
this order of execution is broken up by chains. Linux users generally accept the man‐
tra of “tables contains chains,” but this may feel misleading. The order of execution is
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chains, then tables. So, for example, a packet will trigger Raw PREROUTING, Mangle
PREROUTING, NAT PREROUTING, and then trigger the Mangle table in either the INPUT
or FORWARD chain (depending on the packet). We’ll cover this in more detail in the
next section on chains, as we put more pieces together.

iptables chains

iptables chains are a list of rules. When a packet triggers or passes through a chain,
each rule is sequentially evaluated, until the packet matches a “terminating target”
(such as DROP), or the packet reaches the end of the chain.

The built-in, “top-level” chains are PREROUTING, INPUT, NAT, OUTPUT, and POSTROUT
ING. These are powered by Netfilter hooks. Each chain corresponds to a hook.
Table 2-5 shows the chain and hook pairs. There are also user-defined subchains that
exist to help organize rules.

Table 2-5. iptables chains and corresponding Netfilter hooks

iptables chain Netfilter hook

PREROUTIN NF_IP_PRE_ROUTING

INPUT NF_IP_LOCAL_IN

NAT NF_IP_FORWARD

OUTPUT NF_IP_LOCAL_OUT

POSTROUTING NF_IP_POST_ROUTING

Returning to our diagram of Netfilter hook ordering, we can infer the equivalent dia‐
gram of iptables chain execution and ordering for a given packet (see Figure 2-4).

Figure 2-4. The possible flows of a packet through iptables chains
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Again, like Netfilter, there are only a handful of ways that a packet can traverse these
chains (assuming the packet is not rejected or dropped along the way). Let’s use an
example with three machines, with IP addresses 10.0.0.1, 10.0.0.2, and 10.0.0.3,
respectively. We will show some routing scenarios from the perspective of machine 1
(with IP address 10.0.0.1). We examine them in Table 2-6.

Table 2-6. iptables chains executed in various scenarios

Packet description Packet source Packet
destination

Tables processed

An inbound packet, from another machine. 10.0.0.2 10.0.0.1 PREROUTING, INPUT

An inbound packet, not destined for this
machine.

10.0.0.2 10.0.0.3 PREROUTING, NAT, POSTROUTING

An outbound packet, originating locally,
destined for another machine.

10.0.0.1 10.0.0.2 OUTPUT, POSTROUTING

A packet from a local program, destined for
the same machine.

127.0.0.1 127.0.0.1 OUTPUT, POSTROUTING (then PRE
ROUTING, INPUT as the packet re-
enters via the loopback interface)

You can experiment with chain execution behavior on your own
using LOG rules. For example:

iptables -A OUTPUT -p tcp --dport 22 -j LOG
--log-level info --log-prefix "ssh-output"

will log TCP packets to port 22 when they are processed by the OUT
PUT chain, with the log prefix "ssh-output“. Be aware that log size
can quickly become unwieldy. Log on important hosts with care.

Recall that when a packet triggers a chain, iptables executes tables within that chain
(specifically, the rules within each table) in the following order:

1. Raw
2. Mangle
3. NAT
4. Filter

Most chains do not contain all tables; however, the relative execution order remains
the same. This is a design decision to reduce redundancy. For example, the Raw table
exists to manipulate packets “entering” iptables, and therefore has only PREROUTING
and OUTPUT chains, in accordance with Netfilter’s packet flow. The tables that contain
each chain are laid out in Table 2-7.
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Table 2-7. Which iptables tables (rows) contain which chains (columns)

Raw Mangle NAT Filter

PREROUTING ✓ ✓ ✓
INPUT ✓ ✓ ✓
FORWARD ✓ ✓
OUTPUT ✓ ✓ ✓ ✓
POSTROUTING ✓ ✓

You can list the chains that correspond to a table yourself, with iptables -L -t
<table>:

$ iptables -L -t filter
Chain INPUT (policy ACCEPT)
target     prot opt source               destination

Chain FORWARD (policy ACCEPT)
target     prot opt source               destination

Chain OUTPUT (policy ACCEPT)
target     prot opt source               destination

There is a small caveat for the NAT table: DNAT can be performed in PREROUTING or
OUTPUT`, and SNAT can be performed in only INPUT or POSTROUTING.

To give an example, suppose we have an inbound packet destined for our host. The
order of execution would be:

1. PREROUTING

a. Raw
b. Mangle
c. NAT

2. INPUT

a. Mangle
b. NAT
c. Filter

Now that we’ve learned about Netfilter hooks, tables, and chains, let’s take one last
look at the flow of a packet through iptables, shown in Figure 2-5.
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Figure 2-5. The flow of a packet through iptables tables and chains. A circle denotes a
table/hook combination that exists in iptables.

All iptables rules belong to a table and chain, the possible combinations of which
are represented as dots in our flow chart. iptables evaluates chains (and the rules in
them, in order) based on the order of Netfilter hooks that a packet triggers. For the
given chain, iptables evaluates that chain in each table that it is present in (note that
some chain/table combinations do not exist, such as Filter/POSTROUTING). If we trace
the flow of a packet originating from the local host, we see the following table/chains
pairs evaluated, in order:

1. Raw/OUTPUT
2. Mangle/OUTPUT
3. NAT/OUTPUT
4. Filter/OUTPUT
5. Mangle/POSTROUTING
6. NAT/POSTROUTING
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Subchains
The aforementioned chains are the top-level, or entry-point, chains. However, users
can define their own subchains and execute them with the JUMP target. iptables
executes such a chain in the same manner, target by target, until a terminating target
matches. This can be useful for logical separation or reusing a series of targets that
can be executed in more than one context (i.e., a similar motivation to why we might
organize code into a function). Such organization of rules across chains can have a
substantial impact on performance. iptables is, effectively, running tens or hundreds
or thousands of if statements against every single packet that goes in or out of your
system. That has measurable impact on packet latency, CPU use, and network
throughput. A well-organized set of chains reduces this overhead by eliminating
effectively redundant checks or actions. However, iptables’s performance given a
service with many pods is still a problem in Kubernetes, which makes other solutions
with less or no iptables use, such as IPVS or eBPF, more appealing.

Let’s look at creating new chains in Example 2-6.

Example 2-6. Sample iptables chain for SSH firewalling

# Create incoming-ssh chain.
$ iptables -N incoming-ssh

# Allow packets from specific IPs.
$ iptables -A incoming-ssh -s 10.0.0.1 -j ACCEPT
$ iptables -A incoming-ssh -s 10.0.0.2 -j ACCEPT

# Log the packet.
$ iptables -A incoming-ssh -j LOG --log-level info --log-prefix "ssh-failure"

# Drop packets from all other IPs.
$ iptables -A incoming-ssh -j DROP

# Evaluate the incoming-ssh chain,
# if the packet is an inbound TCP packet addressed to port 22.
$ iptables -A INPUT -p tcp --dport 22 -j incoming-ssh

This example creates a new chain, incoming-ssh, which is evaluated for any TCP
packets inbound on port 22. The chain allows packets from two specific IP addresses,
and packets from other addresses are logged and dropped.

Filter chains end in a default action, such as dropping the packet if no prior target
matched. Chains will default to ACCEPT if no default is specified. iptables -P

<chain> <target> sets the default.
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iptables rules
Rules have two parts: a match condition and an action (called a target). The match
condition describes a packet attribute. If the packet matches, the action will be exe‐
cuted. If the packet does not match, iptables will move to check the next rule.

Match conditions check if a given packet meets some criteria, for example, if the
packet has a specific source address. The order of operations from tables/chains is
important to remember, as prior operations can impact the packet by mutating it,
dropping it, or rejecting it. Table 2-8 shows some common match types.

Table 2-8. Some common iptables match types

Match type Flag(s) Description
Source -s, --src, --source Matches packets with the specified source address.

Destination -d, --dest, --destination Matches packets with the destination source address.

Protocol -p, --protocol Matches packets with the specified protocol.

In interface -i, --in-interface Matches packets that entered via the specified interface.

Out interface -o, --out-interface Matches packets that are leaving the specified interface.

State -m state --state 
<states>

Matches packets from connections that are in one of the comma-
separated states. This uses the Conntrack states (NEW, ESTABLISHED,
RELATED, INVALID).

Using -m or --match, iptables can use extensions for match crite‐
ria. Extensions range from nice-to-haves, such as specifying multi‐
ple ports in a single rule (multiport), to more complex features
such as eBPF interactions. man iptables-extensions contains
more information.

There are two kinds of target actions: terminating and nonterminating. A terminating
target will stop iptables from checking subsequent targets in the chain, essentially
acting as a final decision. A nonterminating target will allow iptables to continue
checking subsequent targets in the chain. ACCEPT, DROP, REJECT, and RETURN are all
terminating targets. Note that ACCEPT and RETURN are terminating only within their
chain. That is to say, if a packet hits an ACCEPT target in a subchain, the parent chain
will resume processing and could potentially drop or reject the target. Example 2-7
shows a set of rules that would reject packets to port 80, despite matching an ACCEPT
at one point. Some command output has been removed for simplicity.
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Example 2-7. Rule sequence which would reject some previously accepted packets

```
$ iptables -L --line-numbers
Chain INPUT (policy ACCEPT)
num  target     prot opt source               destination
1    accept-all  all  --  anywhere             anywhere
2    REJECT     tcp  --  anywhere             anywhere
    tcp dpt:80 reject-with icmp-port-unreachable

Chain accept-all (1 references)
num  target     prot opt source               destination
1               all  --  anywhere             anywhere
```

Table 2-9 summarizes common target types and their behavior.

Table 2-9. Common iptables target types and behavior

Target type Applicable
tables

Description

AUDIT All Records data about accepted, dropped, or rejected packets.

ACCEPT Filter Allows the packet to continue unimpeded and without further modification.

DNAT NAT Modifies the destination address.

DROPs Filter Discards the packet. To an external observer, it will appear as though the packet was never
received.

JUMP All Executes another chain. Once that chain finishes executing, execution of the parent chain will
continue.

LOG All Logs the packet contents, via the kernel log.

MARK All Sets a special integer for the packet, used as an identifier by Netfilter. The integer can be used
in other iptables decisions and is not written to the packet itself.

MASQUER
ADE

NAT Modifies the source address of the packet, replacing it with the address of a specified network
interface. This is similar to SNAT, but does not require the machine’s IP address to be known
in advance.

REJECT Filter Discards the packet and sends a rejection reason.

RETURN All Stops processing the current chain (or subchain). Note that this is not a terminating target,
and if there is a parent chain, that chain will continue to be processed.

SNAT NAT Modifies the source address of the packet, replacing it with a fixed address. See also: MAS
QUERADE.
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Each target type may have specific options, such as ports or log strings, that apply to
the rule. Table 2-10 shows some example commands and explanations.

Table 2-10. iptables target command examples

Command Explanation
iptables -A INPUT -s 10.0.0.1 Accepts an inbound packet if the source address is 10.0.0.1.

iptables -A INPUT -p ICMP Accepts all inbound ICMP packets.

iptables -A INPUT -p tcp --dport 443 Accepts all inbound TCP packets to port 443.

iptables -A INPUT -p tcp --dport 22 -j DROP Drops all inbound TCP ports to port 22.

A target belongs to both a table and a chain, which control when (if at all) iptables
executes the aforementioned target for a given packet. Next, we’ll put together what
we’ve learned and look at iptables commands in practice.

Practical iptables

You can show iptables chains with iptables -L:

$ iptables -L
Chain INPUT (policy ACCEPT)
target     prot opt source               destination

Chain FORWARD (policy ACCEPT)
target     prot opt source               destination

Chain OUTPUT (policy ACCEPT)
target     prot opt source               destination

There is a distinct but nearly identical program, ip6tables, for
managing IPv6 rules. iptables and ip6tables rules are completely
separate. For example, dropping all packets to TCP 0.0.0.0:22
with iptables will not prevent connections to TCP [::]:22, and
vice versa for ip6tables.
For simplicity, we will refer only to iptables and IPv4 addresses in
this section.

--line-numbers shows numbers for each rule in a chain. This can be helpful when
inserting or deleting rules. -I <chain> <line> inserts a rule at the specified line
number, before the previous rule at that line.
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The typical format of a command to interact with iptables rules is:

iptables [-t table] {-A|-C|-D} chain rule-specification

where -A is for append, -C is for check, and -D is for delete.

iptables rules aren’t persisted across restarts. iptables provides
iptables-save and iptables-restore tools, which can be used
manually or with simple automation to capture or reload rules.
This is something that most firewall tools paper over by automati‐
cally creating their own iptables rules every time the system 
starts.

iptables can masquerade connections, making it appear as if the packets came from
their own IP address. This is useful to provide a simplified exterior to the outside
world. A common use case is to provide a known host for traffic, as a security bas‐
tion, or to provide a predictable set of IP addresses to third parties. In Kubernetes,
masquerading can make pods use their node’s IP address, despite the fact that pods
have unique IP addresses. This is necessary to communicate outside the cluster in
many setups, where pods have internal IP addresses that cannot communicate
directly with the internet. The MASQUERADE target is similar to SNAT; however, it does
not require a --source-address to be known and specified in advance. Instead, it
uses the address of a specified interface. This is slightly less performant than SNAT in
cases where the new source address is static, as iptables must continuously fetch the
address:

$iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

iptables can perform connection-level load balancing or more accurately, connec‐
tion fan-out. This technique relies on DNAT rules and random selection (to prevent
every connection from being routed to the first DNAT target):

$ iptables -t nat -A OUTPUT -p tcp --dport 80 -d $FRONT_IP -m statistic \
--mode random --probability 0.5 -j DNAT --to-destination $BACKEND1_IP:80
$ iptables -t nat -A OUTPUT -p tcp --dport 80 -d $FRONT_IP \
-j DNAT --to-destination $BACKEND2_IP:80

In the previous example, there is a 50% chance of routing to the first backend. Other‐
wise, the packet proceeds to the next rule, which is guaranteed to route the connec‐
tion to the second backend. The math gets a little tedious for adding more backends.
To have an equal chance of routing to any backend, the nth backend must have a 1/n
chance of being routed to. If there were three backends, the probabilities would need
to be 0.3 (repeating), 0.5, and 1:
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Chain KUBE-SVC-I7EAKVFJLYM7WH25 (1 references)
target     prot opt source               destination
KUBE-SEP-LXP5RGXOX6SCIC6C  all  --  anywhere             anywhere
    statistic mode random probability 0.25000000000
KUBE-SEP-XRJTEP3YTXUYFBMK  all  --  anywhere             anywhere
    statistic mode random probability 0.33332999982
KUBE-SEP-OMZR4HWUSCJLN33U  all  --  anywhere             anywhere
    statistic mode random probability 0.50000000000
KUBE-SEP-EELL7LVIDZU4CPY6  all  --  anywhere             anywhere

When Kubernetes uses iptables load balancing for a service, it creates a chain as
shown previously. If you look closely, you can see rounding errors in one of the prob‐
ability numbers.

Using DNAT fan-out for load balancing has several caveats. It has no feedback for the
load of a given backend and will always map application-level queries on the same
connection to the same backend. Because the DNAT result lasts the lifetime of the
connection, if long-lived connections are common, many downstream clients may
stick to the same upstream backend if that backend is longer lived than others. To
give a Kubernetes example, suppose a gRPC service has only two replicas and then
additional replicas scale up. gRPC reuses the same HTTP/2 connection, so existing
downstream clients (using the Kubernetes service and not gRPC load balancing) will
stay connected to the initial two replicas, skewing the load profile among gRPC back‐
ends. Because of this, many developers use a smarter client (such as making use of
gRPC’s client-side load balancing), force periodic reconnects at the server and/or cli‐
ent, or use service meshes to externalize the problem. We’ll discuss load balancing in
more detail in Chapters 4 and 5.

Although iptables is widely used in Linux, it can become slow in the presence of a
huge number of rules and offers limited load balancing functionality. Next we’ll look
at IPVS, an alternative that is more purpose-built for load balancing.

IPVS
IP Virtual Server (IPVS) is a Linux connection (L4) load balancer. Figure 2-6 shows a
simple diagram of IPVS’s role in routing packets.
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Figure 2-6. IPVS

iptables can do simple L4 load balancing by randomly routing connections, with
the randomness shaped by the weights on individual DNAT rules. IPVS supports
multiple load balancing modes (in contrast with the iptables one), which are out‐
lined in Table 2-11. This allows IPVS to spread load more effectively than iptables,
depending on IPVS configuration and traffic patterns.

Table 2-11. IPVS modes supported in Kubernetes

Name Shortcode Description
Round-robin rr Sends subsequent connections to the “next” host in a cycle. This increases the time

between subsequent connections sent to a given host, compared to random routing like
iptables enables.

Least connection lc Sends connections to the host that currently has the least open connections.

Destination
hashing

dh Sends connections deterministically to a specific host, based on the connections’
destination addresses.

Source hashing sh Sends connections deterministically to a specific host, based on the connections’ source
addresses.

Shortest expected
delay

sed Sends connections to the host with the lowest connections to weight ratio.

Never queue nq Sends connections to any host with no existing connections, otherwise uses “shortest
expected delay” strategy.
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IPVS supports packet forwarding modes:

• NAT rewrites source and destination addresses.
• DR encapsulates IP datagrams within IP datagrams.
• IP tunneling directly routes packets to the backend server by rewriting the MAC

address of the data frame with the MAC address of the selected backend server.

There are three aspects to look at when it comes to issues with iptables as a load
balancer:

Number of nodes in the cluster
Even though Kubernetes already supports 5,000 nodes in release v1.6, kube-
proxy with iptables is a bottleneck to scale the cluster to 5,000 nodes. One
example is that with a NodePort service in a 5,000-node cluster, if we have 2,000
services and each service has 10 pods, this will cause at least 20,000 iptables
records on each worker node, which can make the kernel pretty busy.

Time
The time spent to add one rule when there are 5,000 services (40,000 rules) is 11
minutes. For 20,000 services (160,000 rules), it’s 5 hours.

Latency
There is latency to access a service (routing latency); each packet must traverse
the iptables list until a match is made. There is latency to add/remove rules,
inserting and removing from an extensive list is an intensive operation at scale.

IPVS also supports session affinity, which is exposed as an option in services
(Service.spec.sessionAffinity and Service.spec.sessionAffinityConfig).
Repeated connections, within the session affinity time window, will route to the same
host. This can be useful for scenarios such as minimizing cache misses. It can also
make routing in any mode effectively stateful (by indefinitely routing connections
from the same address to the same host), but the routing stickiness is less absolute in
Kubernetes, where individual pods come and go.

To create a basic load balancer with two equally weighted destinations, run ipvsadm
-A -t <address> -s <mode>. -A, -E, and -D are used to add, edit, and delete virtual
services, respectively. The lowercase counterparts, -a, -e, and -d, are used to add,
edit, and delete host backends, respectively:

# ipvsadm -A -t 1.1.1.1:80 -s lc
# ipvsadm -a -t 1.1.1.1:80 -r 2.2.2.2 -m -w 100
# ipvsadm -a -t 1.1.1.1:80 -r 3.3.3.3 -m -w 100

You can list the IPVS hosts with -L. Each virtual server (a unique IP address and port
combination) is shown, with its backends:
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# ipvsadm -L
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  1.1.1.1.80:http lc
  -> 2.2.2.2:http             Masq    100    0          0
  -> 3.3.3.3:http             Masq    100    0          0

-L supports multiple options, such as --stats, to show additional connection 
statistics.

eBPF
eBPF is a programming system that allows special sandboxed programs to run in the
kernel without passing back and forth between kernel and user space, like we saw
with Netfilter and iptables.

Before eBPF, there was the Berkeley Packet Filter (BPF). BPF is a technology used in
the kernel, among other things, to analyze network traffic. BPF supports filtering
packets, which allows a userspace process to supply a filter that specifies which pack‐
ets it wants to inspect. One of BPF’s use cases is tcpdump, shown in Figure 2-7. When
you specify a filter on tcpdump, it compiles it as a BPF program and passes it to BPF.
The techniques in BPF have been extended to other processes and kernel operations.

Figure 2-7. tcpdump

An eBPF program has direct access to syscalls. eBPF programs can directly watch and
block syscalls, without the usual approach of adding kernel hooks to a userspace pro‐
gram. Because of its performance characteristics, it is well suited for writing network‐
ing software.
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You can learn more about eBPF on its website.

In addition to socket filtering, other supported attach points in the kernel are as
follows:

Kprobes
Dynamic kernel tracing of internal kernel components.

Uprobes
User-space tracing.

Tracepoints
Kernel static tracing. These are programed into the kernel by developers and are
more stable as compared to kprobes, which may change between kernel versions.

perf_events
Timed sampling of data and events.

XDP
Specialized eBPF programs that can go lower than kernel space to access driver
space to act directly on packets.

Let’s return to tcpdump as an example. Figure 2-8 shows a simplified rendition of
tcpdump’s interactions with eBPF.

Figure 2-8. eBPF example

Suppose we run tcpdump -i any.
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The string is compiled by pcap_compile into a BPF program. The kernel will then use
this BPF program to filter all packets that go through all the network devices we
specified, any with the -I in our case.

It will make this data available to tcpdump via a map. Maps are a data structure con‐
sisting of key-value pairs used by the BPF programs to exchange data.

There are many reasons to use eBPF with Kubernetes:

Performance (hashing table versus iptables list)
For every service added to Kubernetes, the list of iptables rules that have to be
traversed grows exponentially. Because of the lack of incremental updates, the
entire list of rules has to be replaced each time a new rule is added. This leads to a
total duration of 5 hours to install the 160,000 iptables rules representing
20,000 Kubernetes services.

Tracing
Using BPF, we can gather pod and container-level network statistics. The BPF
socket filter is nothing new, but the BPF socket filter per cgroup is. Introduced in
Linux 4.10, cgroup-bpf allows attaching eBPF programs to cgroups. Once
attached, the program is executed for all packets entering or exiting any process
in the cgroup.

Auditing kubectl exec with eBPF
With eBPF, you can attach a program that will record any commands executed in
the kubectl exec session and pass those commands to a userspace program that
logs those events.

Security

Seccomp
Secured computing that restricts what syscalls are allowed. Seccomp filters
can be written in eBPF.

Falco
Open source container-native runtime security that uses eBPF.

The most common use of eBPF in Kubernetes is Cilium, CNI and service implemen‐
tation. Cilium replaces kube-proxy, which writes iptables rules to map a service’s IP
address to its corresponding pods.

Through eBPF, Cilium can intercept and route all packets directly in the kernel,
which is faster and allows for application-level (layer 7) load balancing. We will cover
kube-proxy in Chapter 4.
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Network Troubleshooting Tools
Troubleshooting network-related issues with Linux is a complex topic and could
easily fill its own book. In this section, we will introduce some key troubleshooting
tools and the basics of their use (Table 2-12 is provided as a simple cheat sheet of
tools and applicable use cases). Think of this section as a jumping-off point for com‐
mon Kubernetes-related tool uses. Man pages, --help, and the internet can guide you
further. There is substantial overlap in the tools that we describe, so you may find
learning about some tools (or tool features) redundant. Some are better suited to a
given task than others (for example, multiple tools will catch TLS errors, but
OpenSSL provides the richest debugging information). Exact tool use may come
down to preference, familiarity, and availability.

Table 2-12. Cheat sheet of common debugging cases and tools

Case Tools
Checking connectivity traceroute, ping, telnet, netcat

Port scanning nmap

Checking DNS records dig, commands mentioned in “Checking Connectivity”

Checking HTTP/1 cURL, telnet, netcat

Checking HTTPS OpenSSL, cURL

Checking listening programs netstat

Some networking tools that we describe likely won’t be preinstalled in your distro of
choice, but all should be available through your distro’s package manager. We will
sometimes use # Truncated in command output where we have omitted text to avoid
examples becoming repetitive or overly long.

Security Warning
Before we get into tooling details, we need to talk about security. An attacker can uti‐
lize any tool listed here in order to explore and access additional systems. There are
many strong opinions on this topic, but we consider it best practice to leave the few‐
est possible networking tools installed on a given machine.

An attacker may still be able to download tools themselves (e.g., by downloading a
binary from the internet) or use the standard package manager (if they have sufficient
permission). In most cases, you are simply introducing some additional friction prior
to exploring and exploiting. However, in some cases you can reduce an attacker’s
capabilities by not preinstalling networking tools.

Linux file permissions include something called the setuid bit that is sometimes used
by networking tools. If a file has the setuid bit set, executing said file causes the file to
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be executed as the user who owns the file, rather than the current user. You can
observe this by looking for an s rather than an x in the permission readout of a file:

$ ls -la /etc/passwd
-rwsr-xr-x 1 root root 68208 May 28  2020 /usr/bin/passwd

This allows programs to expose limited, privileged capabilities (for example, passwd
uses this ability to allow a user to update their password, without allowing arbitrary
writes to the password file). A number of networking tools (ping, nmap, etc.) may use
the setuid bit on some systems to send raw packets, sniff packets, etc. If an attacker
downloads their own copy of a tool and cannot gain root privileges, they will be able
to do less with said tool than if it was installed by the system with the setuid bit set.

ping
ping is a simple program that sends ICMP ECHO_REQUEST packets to networked devi‐
ces. It is a common, simple way to test network connectivity from one host to
another.

ICMP is a layer 4 protocol, like TCP and UDP. Kubernetes services support TCP and
UDP, but not ICMP. This means that pings to a Kubernetes service will always fail.
Instead, you will need to use telnet or a higher-level tool such as cURL to check con‐
nectivity to a service. Individual pods may still be reachable by ping, depending on
your network configuration.

Firewalls and routing software are aware of ICMP packets and can
be configured to filter or route specific ICMP packets. It is com‐
mon, but not guaranteed (or necessarily advisable), to have permis‐
sive rules for ICMP packets. Some network administrators,
network software, or cloud providers will allow ICMP packets by
default.

The basic use of ping is simply ping <address>. The address can be an IP address or
a domain. ping will send a packet, wait, and report the status of that request when a
response or timeout happens.

By default, ping will send packets forever, and must be manually stopped (e.g., with
Ctrl-C). -c <count> will make ping perform a fixed number before shutting down.
On shutdown, ping also prints a summary:

$ ping -c 2 k8s.io
PING k8s.io (34.107.204.206): 56 data bytes
64 bytes from 34.107.204.206: icmp_seq=0 ttl=117 time=12.665 ms
64 bytes from 34.107.204.206: icmp_seq=1 ttl=117 time=12.403 ms

--- k8s.io ping statistics ---
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2 packets transmitted, 2 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 12.403/12.534/12.665/0.131 ms

Table 2-13 shows common ping options.

Table 2-13. Useful ping options

Option Description
-c <count> Sends the specified number of packets. Exits after the final packet is received or times out.

-i <seconds> Sets the wait interval between sending packets. Defaults to 1 second. Extremely low values are not
recommended, as ping can flood the network.

-o Exit after receiving 1 packet. Equivalent to -c 1.

-S <source address> Uses the specified source address for the packet.

-W <milliseconds> Sets the wait interval to receive a packet. If ping receives the packet later than the wait time, it will
still count toward the final summary.

traceroute
traceroute shows the network route taken from one host to another. This allows
users to easily validate and debug the route taken (or where routing fails) from one
machine to another.

traceroute sends packets with specific IP time-to-live values. Recall from Chapter 1
that each host that handles a packet decrements the time-to-live (TTL) value on
packets by 1, therefore limiting the number of hosts that a request can be handled by.
When a host receives a packet and decrements the TTL to 0, it sends a TIME_EXCEE
DED packet and discards the original packet. The TIME_EXCEEDED response packet
contains the source address of the machine where the packet timed out. By starting
with a TTL of 1 and raising the TTL by 1 for each packet, traceroute is able to get a
response from each host along the route to the destination address.

traceroute displays hosts line by line, starting with the first external machine. Each
line contains the hostname (if available), IP address, and response time:

$traceroute k8s.io
traceroute to k8s.io (34.107.204.206), 64 hops max, 52 byte packets
 1  router (10.0.0.1)  8.061 ms  2.273 ms  1.576 ms
 2  192.168.1.254 (192.168.1.254)  2.037 ms  1.856 ms  1.835 ms
 3  adsl-71-145-208-1.dsl.austtx.sbcglobal.net (71.145.208.1)
4.675 ms  7.179 ms  9.930 ms
 4  * * *
 5  12.122.149.186 (12.122.149.186)  20.272 ms  8.142 ms  8.046 ms
 6  sffca22crs.ip.att.net (12.122.3.70)  14.715 ms  8.257 ms  12.038 ms
 7  12.122.163.61 (12.122.163.61)  5.057 ms  4.963 ms  5.004 ms
 8  12.255.10.236 (12.255.10.236)  5.560 ms
    12.255.10.238 (12.255.10.238)  6.396 ms
    12.255.10.236 (12.255.10.236)  5.729 ms
 9  * * *
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10  206.204.107.34.bc.googleusercontent.com (34.107.204.206)
64.473 ms  10.008 ms  9.321 ms

If traceroute receives no response from a given hop before timing out, it prints a *.
Some hosts may refuse to send a TIME_EXCEEDED packet, or a firewall along the way
may prevent successful delivery.

Table 2-14 shows common traceroute options.

Table 2-14. Useful traceroute options

Option Syntax Description
First TTL -f <TTL>, -M <TTL> Set the starting IP TTL (default value: 1). Setting the TTL to n will cause

traceroute to not report the first n-1 hosts en route to the destination.

Max TTL -m <TTL> Set the maximum TTL, i.e., the maximum number of hosts that traceroute
will attempt to route through.

Protocol -P <protocol> Send packets of the specified protocol (TCP, UDP, ICMP, and sometimes other
options). UDP is default.

Source
address

-s <address> Specify the source IP address of outgoing packets.

Wait -w <seconds> Set the time to wait for a probe response.

dig
dig is a DNS lookup tool. You can use it to make DNS queries from the command
line and display the results.

The general form of a dig command is dig [options] <domain>. By default, dig will
display the CNAME, A, and AAAA records:

$ dig kubernetes.io

; <<>> DiG 9.10.6 <<>> kubernetes.io
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 51818
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1452
;; QUESTION SECTION:
;kubernetes.io.   IN A

;; ANSWER SECTION:
kubernetes.io.  960 IN A 147.75.40.148

;; Query time: 12 msec
;; SERVER: 2600:1700:2800:7d4f:6238:e0ff:fe08:6a7b#53
(2600:1700:2800:7d4f:6238:e0ff:fe08:6a7b)
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;; WHEN: Mon Jul 06 00:10:35 PDT 2020
;; MSG SIZE  rcvd: 71

To display a particular type of DNS record, run dig <domain> <type> (or dig -t
<type> <domain>). This is overwhelmingly the main use case for dig:

$ dig kubernetes.io TXT

; <<>> DiG 9.10.6 <<>> -t TXT kubernetes.io
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16443
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;kubernetes.io.   IN TXT

;; ANSWER SECTION:
kubernetes.io.  3599 IN TXT
"v=spf1 include:_spf.google.com ~all"
kubernetes.io.  3599 IN TXT
"google-site-verification=oPORCoq9XU6CmaR7G_bV00CLmEz-wLGOL7SXpeEuTt8"

;; Query time: 49 msec
;; SERVER: 2600:1700:2800:7d4f:6238:e0ff:fe08:6a7b#53
(2600:1700:2800:7d4f:6238:e0ff:fe08:6a7b)
;; WHEN: Sat Aug 08 18:11:48 PDT 2020
;; MSG SIZE  rcvd: 171

Table 2-15 shows common dig options.

Table 2-15. Useful dig options

Option Syntax Description
IPv4 -4 Use IPv4 only.

IPv6 -6 Use IPv6 only.

Address -b <address>[#<port>] Specify the address to make a DNS query to. Port can optionally be included,
preceded by #.

Port -p <port> Specify the port to query, in case DNS is exposed on a nonstandard port. The
default is 53, the DNS standard.

Domain -q <domain> The domain name to query. The domain name is usually specified as a
positional argument.

Record
Type

-t <type> The DNS record type to query. The record type can alternatively be specified
as a positional argument.
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telnet
telnet is both a network protocol and a tool for using said protocol. telnet was
once used for remote login, in a manner similar to SSH. SSH has become dominant
due to having better security, but telnet is still extremely useful for debugging
servers that use a text-based protocol. For example, with telnet, you can connect to
an HTTP/1 server and manually make requests against it.

The basic syntax of telnet is telnet <address> <port>. This establishes a connec‐
tion and provides an interactive command-line interface. Pressing Enter twice will
send a command, which easily allows multiline commands to be written. Press Ctrl-J
to exit the session:

$ telnet kubernetes.io
Trying 147.75.40.148...
Connected to kubernetes.io.
Escape character is '^]'.
> HEAD / HTTP/1.1
> Host: kubernetes.io
>
HTTP/1.1 301 Moved Permanently
Cache-Control: public, max-age=0, must-revalidate
Content-Length: 0
Content-Type: text/plain
Date: Thu, 30 Jul 2020 01:23:53 GMT
Location: https://kubernetes.io/
Age: 2
Connection: keep-alive
Server: Netlify
X-NF-Request-ID: a48579f7-a045-4f13-af1a-eeaa69a81b2f-23395499

To make full use of telnet, you will need to understand how the application protocol
that you are using works. telnet is a classic tool to debug servers running HTTP,
HTTPS, POP3, IMAP, and so on.

nmap
nmap is a port scanner, which allows you to explore and examine services on your
network.

The general syntax of nmap is nmap [options] <target>, where target is a domain,
IP address, or IP CIDR. nmap’s default options will give a fast and brief summary of
open ports on a host:

$ nmap 1.2.3.4
Starting Nmap 7.80 ( https://nmap.org ) at 2020-07-29 20:14 PDT
Nmap scan report for my-host (1.2.3.4)
Host is up (0.011s latency).
Not shown: 997 closed ports
PORT     STATE SERVICE
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22/tcp   open  ssh
3000/tcp open  ppp
5432/tcp open  postgresql

Nmap done: 1 IP address (1 host up) scanned in 0.45 seconds

In the previous example, nmap detects three open ports and guesses which service is
running on each port.

Because nmap can quickly show you which services are accessible
from a remote machine, it can be a quick and easy way to spot
services that should not be exposed. nmap is a favorite tool for
attackers for this reason.

nmap has a dizzying number of options, which change the scan behavior and level of
detail provided. As with other commands, we will summarize some key options, but
we highly recommend reading nmap’s help/man pages.

Table 2-16 shows common nmap options.

Table 2-16. Useful nmap options

Option Syntax Description
Additional detection -A Enable OS detection, version detection, and more.

Decrease verbosity -d Decrease the command verbosity. Using multiple d’s (e.g., -dd) increases the effect.

Increase verbosity -v Increase the command verbosity. Using multiple v’s (e.g., -vv) increases the effect.

netstat
netstat can display a wide range of information about a machine’s network stack and
connections:

$ netstat
Active internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State
tcp        0    164 my-host:ssh             laptop:50113            ESTABLISHED
tcp        0      0 my-host:50051           example-host:48760      ESTABLISHED
tcp6       0      0 2600:1700:2800:7d:54310 2600:1901:0:bae2::https TIME_WAIT
udp6       0      0 localhost:38125         localhost:38125         ESTABLISHED
Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags   Type    State  I-Node  Path
unix  13     [ ]     DGRAM          8451    /run/systemd/journal/dev-log
unix  2      [ ]     DGRAM          8463    /run/systemd/journal/syslog
[Cut for brevity]

Invoking netstat with no additional arguments will display all connected sockets on
the machine. In our example, we see three TCP sockets, one UDP socket, and a
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multitude of UNIX sockets. The output includes the address (IP address and port) on
both sides of a connection.

We can use the -a flag to show all connections or -l to show only listening
connections:

$ netstat -a
Active internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address      State
tcp        0      0 0.0.0.0:ssh             0.0.0.0:*            LISTEN
tcp        0      0 0.0.0.0:postgresql      0.0.0.0:*            LISTEN
tcp        0    172 my-host:ssh             laptop:50113         ESTABLISHED
[Content cut]

A common use of netstat is to check which process is listening on a specific port. To
do that, we run sudo netstat -lp - l for “listening” and p for “program.” sudo may
be necessary for netstat to view all program information. The output for -l shows
which address a service is listening on (e.g., 0.0.0.0 or 127.0.0.1).

We can use simple tools like grep to get a clear output from netstat when we are
looking for a specific result:

$ sudo netstat -lp | grep 3000
tcp6     0    0 [::]:3000       [::]:*       LISTEN     613/grafana-server

Table 2-17 shows common netstat options.

Table 2-17. Useful netstat commands

Option Syntax Description
Show all sockets netstat -a Shows all sockets, not only open connections.

Show statistics netstat -s Shows networking statistics. By default, netstat shows stats from all protocols.

Show listening
sockets

netstat -l Shows sockets that are listening. This is an easy way to find running services.

TCP netstat -t The -t flag shows only TCP data. It can be used with other flags, e.g., -lt (show
sockets listening with TCP).

UDP netstat -u The -u flag shows only UDP data. It can be used with other flags, e.g., -lu (show
sockets listening with UDP).

netcat
netcat is a multipurpose tool for making connections, sending data, or listening on a
socket. It can be helpful as a way to “manually” run a server or client to inspect what
happens in greater detail. netcat is arguably similar to telnet in this regard, though
netcat is capable of many more things.
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nc is an alias for netcat on most systems.

netcat can connect to a server when invoked as netcat <address> <port>. netcat
has an interactive stdin, which allows you to manually type data or pipe data to net
cat. It’s very telnet-esque so far:

$ echo -e "GET / HTTP/1.1\nHost: localhost\n" > cmd
$ nc localhost 80 < cmd
HTTP/1.1 302 Found
Cache-Control: no-cache
Content-Type: text/html; charset=utf-8
[Content cut]

Openssl
The OpenSSL technology powers a substantial chunk of the world’s HTTPS connec‐
tions. Most heavy lifting with OpenSSL is done with language bindings, but it also has
a CLI for operational tasks and debugging. openssl can do things such as creating
keys and certificates, signing certificates, and, most relevant to us, testing TLS/SSL
connections. Many other tools, including ones outlined in this chapter, can test
TLS/SSL connections. However, openssl stands out for its feature-richness and level
of detail.

Commands usually take the form openssl [sub-command] [arguments] [options].
openssl has a vast number of subcommands (for example, openssl rand allows you
to generate pseudo random data). The list subcommand allows you to list capabili‐
ties, with some search options (e.g., openssl list --commands for commands). To
learn more about individual sub commands, you can check openssl <subcommand>
--help or its man page (man openssl-<subcommand> or just man <subcommand>).

openssl s_client -connect will connect to a server and display detailed informa‐
tion about the server’s certificate. Here is the default invocation:

openssl s_client -connect k8s.io:443
CONNECTED(00000003)
depth=2 O = Digital Signature Trust Co., CN = DST Root CA X3
verify return:1
depth=1 C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3
verify return:1
depth=0 CN = k8s.io
verify return:1
---
Certificate chain
0 s:CN = k8s.io
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i:C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3
1 s:C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3
i:O = Digital Signature Trust Co., CN = DST Root CA X3
---
Server certificate
-----BEGIN CERTIFICATE-----
[Content cut]
-----END CERTIFICATE-----
subject=CN = k8s.io

issuer=C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3

---
No client certificate CA names sent
Peer signing digest: SHA256
Peer signature type: RSA-PSS
Server Temp Key: X25519, 253 bits
---
SSL handshake has read 3915 bytes and written 378 bytes
Verification: OK
---
New, TLSv1.3, Cipher is TLS_AES_256_GCM_SHA384
Server public key is 2048 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
Early data was not sent
Verify return code: 0 (ok)
---

If you are using a self-signed CA, you can use -CAfile <path> to use that CA. This
will allow you to establish and verify connections against a self-signed certificate.

cURL
cURL is a data transfer tool that supports multiple protocols, notably HTTP and
HTTPS.

wget is a similar tool to the command curl. Some distros or
administrators may install it instead of curl.

cURL commands are of the form curl [options] <URL>. cURL prints the URL’s
contents and sometimes cURL-specific messages to stdout. The default behavior is to
make an HTTP GET request:
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$ curl example.org
<!doctype html>
<html>
<head>
    <title>Example Domain</title>
# Truncated

By default, cURL does not follow redirects, such as HTTP 301s or protocol upgrades.
The -L flag (or --location) will enable redirect following:

$ curl kubernetes.io
Redirecting to https://kubernetes.io

$ curl -L kubernetes.io
<!doctype html><html lang=en class=no-js><head>
# Truncated

Use the -X option to perform a specific HTTP verb; e.g., use curl -X DELETE

foo/bar to make a DELETE request.

You can supply data (for a POST, PUT, etc.) in a few ways:

• URL encoded: -d "key1=value1&key2=value2"
• JSON: -d '{"key1":"value1", "key2":"value2"}'
• As a file in either format: -d @data.txt

The -H option adds an explicit header, although basic headers such as Content-Type
are added automatically:

-H "Content-Type: application/x-www-form-urlencoded"

Here are some examples:

$ curl -d "key1=value1" -X PUT localhost:8080

$ curl -H "X-App-Auth: xyz" -d "key1=value1&key2=value2"
-X POST https://localhost:8080/demo

cURL can be of some help when debugging TLS issues, but more
specialized tools such as openssl may be more helpful.

cURL can help diagnose TLS issues. Just like a reputable browser, cURL validates the
certificate chain returned by HTTP sites and checks against the host’s CA certs:

$ curl https://expired-tls-site
curl: (60) SSL certificate problem: certificate has expired
More details here: https://curl.haxx.se/docs/sslcerts.html
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curl failed to verify the legitimacy of the server and therefore could not
establish a secure connection to it. To learn more about this situation and
how to fix it, please visit the web page mentioned above.

Like many programs, cURL has a verbose flag, -v, which will print more information
about the request and response. This is extremely valuable when debugging a layer 7
protocol such as HTTP:

$ curl https://expired-tls-site -v
*   Trying 1.2.3.4...
* TCP_NODELAY set
* Connected to expired-tls-site (1.2.3.4) port 443 (#0)
* ALPN, offering h2
* ALPN, offering http/1.1
* successfully set certificate verify locations:
*   CAfile: /etc/ssl/cert.pem
  CApath: none
* TLSv1.2 (OUT), TLS handshake, Client hello (1):
* TLSv1.2 (IN), TLS handshake, Server hello (2):
* TLSv1.2 (IN), TLS handshake, Certificate (11):
* TLSv1.2 (OUT), TLS alert, certificate expired (557):
* SSL certificate problem: certificate has expired
* Closing connection 0
curl: (60) SSL certificate problem: certificate has expired
More details here: https://curl.haxx.se/docs/sslcerts.html

# Truncated

cURL has many additional features that we have not covered, such as the ability to
use timeouts, custom CA certs, custom DNS, and so on.

Conclusion
This chapter has provided you with a whirlwind tour of networking in Linux. We
focused primarily on concepts that are required to understand Kubernetes’ imple‐
mentation, cluster setup constraints, and debugging Kubernetes-related networking
problems (in workloads on Kubernetes, or Kubernetes itself). This chapter was by no
means exhaustive, and you may find it valuable to learn more.

Next, we will start to look at containers in Linux and how containers interact with the
network.
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CHAPTER 6

Kubernetes and Cloud Networking

The use of the cloud and its service offerings has grown tremendously: 77% of enter‐
prises are using the public cloud in some capacity, and 81% can innovate more
quickly with the public cloud than on-premise. With the popularity and innovation
available in the cloud, it follows that running Kubernetes in the cloud is a logical step.
Each major cloud provider has its own managed service offering for Kubernetes
using its cloud network services.

In this chapter, we’ll explore the network services offered by the major cloud provid‐
ers AWS, Azure, and GCP with a focus on how they affect the networking needed to
run a Kubernetes cluster inside that specific cloud. All the providers also have a CNI
project that makes running a Kubernetes cluster smoother from an integration per‐
spective with their cloud network APIs, so an exploration of the CNIs is warranted.
After reading this chapter, administrators will understand how cloud providers
implement their managed Kubernetes on top of their cloud network services.

Amazon Web Services
Amazon Web Services (AWS) has grown its cloud service offerings from Simple
Queue Service (SQS) and Simple Storage Service (S3) to well over 200 services. Gart‐
ner Research positions AWS in the Leaders quadrant of its 2020 Magic Quadrant for
Cloud Infrastructure & Platform Services. Many services are built atop of other foun‐
dational services. For example, Lambda uses S3 for code storage and DynamoDB for
metadata. AWS CodeCommit uses S3 for code storage. EC2, S3, and CloudWatch are
integrated into the Amazon Elastic MapReduce service, creating a managed data plat‐
form. The AWS networking services are no different. Advanced services such as peer‐
ing and endpoints use building blocks from core networking fundamentals.
Understanding those fundamentals, which enable AWS to build a comprehensive
Kubernetes service, is needed for administrators and developers.
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AWS Network Services
AWS has many services that allow users to extend and secure their cloud networks. 
Amazon Elastic Kubernetes Service (EKS) makes extensive use of those network
components available in the AWS cloud. We will discuss the basics of AWS network‐
ing components and how they are related to deploying an EKS cluster network. This
section will also discuss several other open source tools that make managing a cluster
and application deployments simple. The first is eksctl, a CLI tool that deploys and
manages EKS clusters. As we have seen from previous chapters, there are many com‐
ponents needed to run a cluster, and that is also true on the AWS network. eksctl
will deploy all the components in AWS for cluster and network administrators. Then,
we will discuss the AWS VPC CNI, which allows the cluster to use native AWS serv‐
ices to scale pods and manage their IP address space. Finally, we will examine the 
AWS Application Load Balancer ingress controller, which automates, manages, and
simplifies deployments of application load balancers and ingresses for developers
running applications on the AWS network.

Virtual private cloud
The basis of the AWS network is the virtual private cloud (VPC). A majority of AWS
resources will work inside the VPC. VPC networking is an isolated virtual network
defined by administrators for only their account and its resources. In Figure 6-1, we
can see a VPC defined with a single CIDR of 192.168.0.0/16. All resources inside
the VPC will use that range for private IP addresses. AWS is constantly enhancing its
service offerings; now, network administrators can use multiple nonoverlapping
CIDRs in a VPC. The pod IP addresses will also come from VPC CIDR and host IP
addressing; more on that in “AWS VPC CNI” on page 113. A VPC is set up per AWS
region; you can have multiple VPCs per region, but a VPC is defined in only one.

Figure 6-1. AWS virtual private cloud

Region and availability zones
Resources are defined by boundaries in AWS, such as global, region, or availability
zone. AWS networking comprises multiple regions; each AWS region consists of mul‐
tiple isolated and physically separate availability zones (AZs) within a geographic
area. An AZ can contain multiple data centers, as shown in Figure 6-2. Some regions
can contain six AZs, while newer regions could contain only two. Each AZ is directly
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connected to the others but is isolated from the failures of another AZ. This design is
important to understand for multiple reasons: high availability, load balancing, and
subnets are all affected. In one region a load balancer will route traffic over multiple
AZs, which have separate subnets and thus enable HA for applications.

Figure 6-2. AWS region network layout

An up-to-date list of AWS regions and AZs is available in the
documentation.

Subnet
A VPC is compromised of multiple subnets from the CIDR range and deployed to a
single AZ. Applications that require high availability should run in multiple AZs and
be load balanced with any one of the load balancers available, as discussed in “Region
and availability zones” on page 94.

A subnet is public if the routing table has a route to an internet gateway. In
Figure 6-3, there are three public and private subnets. Private subnets have no direct
route to the internet. These subnets are for internal network traffic, such as databases.
The size of your VPC CIDR range and the number of public and private subnets are a
design consideration when deploying your network architecture. Recent improve‐
ments to VPC like allowing multiple CIDR ranges help lessen the ramification of
poor design choices, since now network engineers can simply add another CIDR
range to a provisioned VPC.
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Figure 6-3. VPC subnets

Let’s discuss those components that help define if a subnet is public or private.

Routing tables
Each subnet has exactly one route table associated with it. If one is not explicitly asso‐
ciated with it, the main route table is the default one. Network connectivity issues can
manifest here; developers deploying applications inside a VPC must know to manip‐
ulate route tables to ensure traffic flows where it’s intended.

The following are rules for the main route table:

• The main route table cannot be deleted.
• A gateway route table cannot be set as the main.
• The main route table can be replaced with a custom route table.
• Admins can add, remove, and modify routes in the main route table.
• The local route is the most specific.
• Subnets can explicitly associate with the main route table.

There are route tables with specific goals in mind; here is a list of them and a descrip‐
tion of how they are different:

Main route table
This route table automatically controls routing for all subnets that are not explic‐
itly associated with any other route table.

Custom route table
A route table network engineers create and customize for specific application
traffic flow.

Edge association
A routing table to route inbound VPC traffic to an edge appliance.
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Subnet route table
A route table that’s associated with a subnet.

Gateway route table
A route table that’s associated with an internet gateway or virtual private gateway.

Each route table has several components that determine its responsibilities:

Route table association
The association between a route table and a subnet, internet gateway, or virtual
private gateway.

Rules
A list of routing entries that define the table; each rule has a destination, target,
status, and propagated flag.

Destination
The range of IP addresses where you want traffic to go (destination CIDR).

Target
The gateway, network interface, or connection through which to send the desti‐
nation traffic; for example, an internet gateway.

Status
The state of a route in the route table: active or blackhole. The blackhole state
indicates that the route’s target isn’t available.

Propagation
Route propagation allows a virtual private gateway to automatically propagate
routes to the route tables. This flag lets you know if it was added via propagation.

Local route
A default route for communication within the VPC.

In Figure 6-4, there are two routes in the route table. Any traffic destined for
11.0.0.0/16 stays on the local network inside the VPC. All other traffic, 0.0.0.0/0,
goes to the internet gateway, igw-f43c4690, making it a public subnet.

Figure 6-4. Route table
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Elastic network interface
An elastic network interface (ENI) is a logical networking component in a VPC that
is equivalent to a virtual network card. ENIs contain an IP address, for the instance,
and they are elastic in the sense that they can be associated and disassociated to an
instance while retaining its properties.

ENIs have these properties:

• Primary private IPv4 address
• Secondary private IPv4 addresses
• One elastic IP (EIP) address per private IPv4 address
• One public IPv4 address, which can be auto-assigned to the network interface for
eth0 when you launch an instance

• One or more IPv6 addresses
• One or more security groups
• MAC address
• Source/destination check flag
• Description

A common use case for ENIs is the creation of management networks that are acces‐
sible only from a corporate network. AWS services like Amazon WorkSpaces use
ENIs to allow access to the customer VPC and the AWS-managed VPC. Lambda can
reach resources, like databases, inside a VPC by provisioning and attaching to an
ENI.

Later in the section we will see how the AWS VPC CNI uses and manages ENIs along
with IP addresses for pods.

Elastic IP address
An EIP address is a static public IPv4 address used for dynamic network addressing
in the AWS cloud. An EIP is associated with any instance or network interface in any
VPC. With an EIP, application developers can mask an instance’s failures by remap‐
ping the address to another instance.

An EIP address is a property of an ENI and is associated with an instance by updating
the ENI attached to the instance. The advantage of associating an EIP with the ENI
rather than directly to the instance is that all the network interface attributes move
from one instance to another in a single step.
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The following rules apply:

• An EIP address can be associated with either a single instance or a network inter‐
face at a time.

• An EIP address can migrate from one instance or network interface to another.
• There is a (soft) limit of five EIP addresses.
• IPv6 is not supported.

Services like NAT and internet gateway use EIPs for consistency between the AZ.
Other gateway services like a bastion can benefit from using an EIP. Subnets can
automatically assign public IP addresses to EC2 instances, but that address could
change; using an EIP would prevent that.

Security controls
There are two fundamental security controls within AWS networking: security
groups and network access control lists (NACLs). In our experience, lots of issues
arise from misconfigured security groups and NACLs. Developers and network engi‐
neers need to understand the differences between the two and the impacts of changes
on them.

Security groups.    Security groups operate at the instance or network interface level and
act as a firewall for those devices associated with them. A security group is a group of
network devices that require common network access to each other and other devices
on the network. In Figure 6-5 ,we can see that security works across AZs. Security
groups have two tables, for inbound and outbound traffic flow. Security groups are
stateful, so if traffic is allowed on the inbound flow, the outgoing traffic is allowed.
Each security group has a list of rules that define the filter for traffic. Each rule is eval‐
uated before a forwarding decision is made.

Figure 6-5. Security group
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The following is a list of components of security group rules:

Source/destination
Source (inbound rules) or destination (outbound rules) of the traffic inspected:

• Individual or range of IPv4 or IPv6 addresses
• Another security group
• Other ENIs, gateways, or interfaces

Protocol
Which layer 4 protocol being filtered, 6 (TCP), 17 (UDP), and 1 (ICMP)

Port range
Specific ports for the protocol being filtered

Description
User-defined field to inform others of the intent of the security group

Security groups are similar to the Kubernetes network policies we discussed in earlier
chapters. They are a fundamental network technology and should always be used to
secure your instances in the AWS VPC. EKS deploys several security groups for com‐
munication between the AWS-managed data plane and your worker nodes.

Network access control lists.    Network access control lists operate similarly to how they
do in other firewalls so that network engineers will be familiar with them. In
Figure 6-6, you can see each subnet has a default NACL associated with it and is
bounded to an AZ, unlike the security group. Filter rules must be defined explicitly in
both directions. The default rules are quite permissive, allowing all traffic in both
directions. Users can define their own NACLs to use with a subnet for an added secu‐
rity layer if the security group is too open. By default, custom NACLs deny all traffic,
and therefore add rules when deployed; otherwise, instances will lose connectivity.

Here are the components of an NACL:

Rule number
Rules are evaluated starting with the lowest numbered rule.

Type
The type of traffic, such as SSH or HTTP.

Protocol
Any protocol that has a standard protocol number: TCP/UDP or ALL.

Port range
The listening port or port range for the traffic. For example, 80 for HTTP traffic.
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Source
Inbound rules only; the CIDR range source of the traffic.

Destination
Outbound rules only; the destination for the traffic.

Allow/Deny
Whether to allow or deny the specified traffic.

Figure 6-6. NACL

NACLs add an extra layer of security for subnets that may protect from lack or mis‐
configuration of security groups.

Table 6-1 summarizes the fundamental differences between security groups and net‐
work ACLs.

Table 6-1. Security and NACL comparison table

Security group Network ACL
Operates at the instance level. Operates at the subnet level.

Supports allow rules only. Supports allow rules and deny rules.

Stateful: Return traffic is automatically allowed,
regardless of any rules.

Stateless: Return traffic must be explicitly allowed by rules.

All rules are evaluated before a forwarding decision is
made.

Rules are processed in order, starting with the lowest numbered
rule.

Applies to an instance or network interface. All rules apply to all instances in the subnets that it’s associated
with.
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It is crucial to understand the differences between NACL and security groups. Net‐
work connectivity issues often arise due to a security group not allowing traffic on a
specific port or someone not adding an outbound rule on an NACL. When trouble‐
shooting issues with AWS networking, developers and network engineers alike
should add checking these components to their troubleshooting list.

All the components we have discussed thus far manage traffic flow inside the VPC.
The following services manage traffic into the VPC from client requests and ulti‐
mately to applications running inside a Kubernetes cluster: network address transla‐
tion devices, internet gateway, and load balancers. Let’s dig into those a little more.

Network address translation devices
Network address translation (NAT) devices are used when instances inside a VPC
require internet connectivity, but network connections should not be made directly
to instances. Examples of instances that should run behind a NAT device are database
instances or other middleware needed to run applications.

In AWS, network engineers have several options for running NAT devices. They can
manage their own NAT devices deployed as EC2 instances or use the AWS Managed
Service NAT gateway (NAT GW). Both require public subnets deployed in multiple
AZs for high availability and EIP. A restriction of a NAT GW is that the IP address of
it cannot change after you deploy it. Also, that IP address will be the source IP
address used to communicate with the internet gateway.

In the VPC route table in Figure 6-7, we can see how the two route tables exist to
establish a connection to the internet. The main route table has two rules, a local
route for the inter-VPC and a route for 0.0.0.0/0 with a target of the NAT GW ID.
The private subnet’s database servers will route traffic to the internet via that NAT
GW rule in their route tables.

Pods and instances in EKS will need to egress the VPC, so a NAT device must be
deployed. Your choice of NAT device will depend on the operational overhead, cost,
or availability requirements for your network design.
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Figure 6-7. VPC routing diagram

Internet gateway
The internet gateway is an AWS-managed service and device in the VPC network that
allows connectivity to the internet for all devices in the VPC. Here are the steps to
ensure access to or from the internet in a VPC:
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1. Deploy and attach an IGW to the VPC.
2. Define a route in the subnet’s route table that directs internet-bound traffic to the

IGW.
3. Verify NACLs and security group rules allow the traffic to flow to and from

instances.

All of this is shown in the VPC routing from Figure 6-7. We see the IGW deploy for
the VPC, a custom route table setup that routes all traffic, 0.0.0.0/0, to the IGW.
The web instances have an IPv4 internet routable address, 198.51.100.1-3.

Elastic load balancers
Now that traffic flows from the internet and clients can request access to applications
running inside a VPC, we will need to scale and distribute the load for requests. AWS
has several options for developers, depending on the type of application load and net‐
work traffic requirements needed.

The elastic load balancer has four options:

Classic
A classic load balancer provides fundamental load balancing of EC2 instances. It
operates at the request and the connection level. Classic load balancers are limi‐
ted in functionality and are not to be used with containers.

Application
Application load balancers are layer 7 aware. Traffic routing is made with
request-specific information like HTTP headers or HTTP paths. The application
load balancer is used with the application load balancer controller. The ALB con‐
troller allows devs to automate the deployment and ALB without using the con‐
sole or API, instead just a few YAML lines.

Network
The network load balancer operates at layer 4. Traffic can be routed based on
incoming TCP/UDP ports to individual hosts running services on that port. The
network load balancer also allows admins to deploy then with an EIP, a feature
unique to the network load balancer.

Gateway
The gateway load balancer manages traffic for appliances at the VPC level. Such
network devices like deep packet inspection or proxies can be used with a gate‐
way load balancer. The gateway load balancer is added here to complete the AWS
service offering but is not used within the EKS ecosystem.
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AWS load balancers have several attributes that are important to understand when
working with not only containers but other workloads inside the VPC:

Rule
(ALB only) The rules that you define for your listener determine how the load
balancer routes all requests to the targets in the target groups.

Listener
Checks for requests from clients. They support HTTP and HTTPS on ports 1–
65535.

Target
An EC2 instance, IP address, pods, or lambda running application code.

Target Group
Used to route requests to a registered target.

Health Check
Test to ensure targets are still able to accept client requests.

Each of these components of an ALB is outlined in Figure 6-8. When a request comes
into the load balancer, a listener is continually checking for requests that match the
protocol and port defined for it. Each listener has a set of rules that define where to
direct the request. The rule will have an action type to determine how to handle the
request:

authenticate-cognito
(HTTPS listeners) Use Amazon Cognito to authenticate users.

authenticate-oidc
(HTTPS listeners) Use an identity provider that is compliant with OpenID Con‐
nect to authenticate users.

fixed-response
Returns a custom HTTP response.

forward
Forward requests to the specified target groups.

redirect
Redirect requests from one URL to another.

The action with the lowest order value is performed first. Each rule must include
exactly one of the following actions: forward, redirect, or fixed-response. In
Figure 6-8, we have target groups, which will be the recipient of our forward rules.
Each target in the target group will have health checks so the load balancer will know
which instances are healthy and ready to receive requests.
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Figure 6-8. Load balancer components

Now that we have a basic understanding of how AWS structures its networking com‐
ponents, we can begin to see how EKS leverages these components to the network
and secure the managed Kubernetes cluster and network.

Amazon Elastic Kubernetes Service
Amazon Elastic Kubernetes Service (EKS) is AWS’s managed Kubernetes service. It 
allows developers, cluster administrators, and network administrators to quickly
deploy a production-scale Kubernetes cluster. Using the scaling nature of the cloud
and AWS network services, with one API request, many services are deployed,
including all the components we reviewed in the previous sections.

How does EKS accomplish this? Like with any new service AWS releases, EKS has
gotten significantly more feature-rich and easier to use. EKS now supports on-prem
deploys with EKS Anywhere, serverless with EKS Fargate, and even Windows nodes.
EKS clusters can be deployed traditionally with the AWS CLI or console. eksctl is a
command-line tool developed by Weaveworks, and it is by far the easiest way to date
to deploy all the components needed to run EKS. Our next section will detail the
requirements to run an EKS cluster and how eksctl accomplishes this for cluster
admins and devs.

Let’s discuss the components of EKS cluster networking.

EKS nodes
Workers nodes in EKS come in three flavors: EKS-managed node groups, self-
managed nodes, and AWS Fargate. The choice for the administrator is how much
control and operational overhead they would like to accrue.

Managed node group
Amazon EKS managed node groups create and manage EC2 instances for you.
All managed nodes are provisioned as part of an EC2 Auto Scaling group that’s
managed by Amazon EKS as well. All resources including EC2 instances and
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Auto Scaling groups run within your AWS account. A managed-node group’s
Auto Scaling group spans all the subnets that you specify when you create the
group.

Self-managed node group
Amazon EKS nodes run in your AWS account and connect to your cluster’s con‐
trol plane via the API endpoint. You deploy nodes into a node group. A node
group is a collection of EC2 instances that are deployed in an EC2 Auto Scaling
group. All instances in a node group must do the following:

• Be the same instance type
• Be running the same Amazon Machine Image
• Use the same Amazon EKS node IAM role

Fargate
Amazon EKS integrates Kubernetes with AWS Fargate by using controllers that
are built by AWS using the upstream, extensible model provided by Kubernetes.
Each pod running on Fargate has its own isolation boundary and does not share
the underlying kernel, CPU, memory, or elastic network interface with another
pod. You also cannot use security groups for pods with pods running on Fargate.

The instance type also affects the cluster network. In EKS the number of pods that
can run on the nodes is defined by the number of IP addresses that instance can run.
We discuss this further in “AWS VPC CNI” on page 113 and “eksctl” on page 111.

Nodes must be able to communicate with the Kubernetes control plane and other
AWS services. The IP address space is crucial to run an EKS cluster. Nodes, pods, and 
all other services will use the VPC CIDR address ranges for components. The EKS
VPC requires a NAT gateway for private subnets and that those subnets be tagged for
use with EKS:

Key – kubernetes.io/cluster/<cluster-name>
Value – shared

The placement of each node will determine the network “mode” that EKS operates;
this has design considerations for your subnets and Kubernetes API traffic routing.

EKS mode
Figure 6-9 outlines EKS components. The Amazon EKS control plane creates up to
four cross-account elastic network interfaces in your VPC for each cluster. EKS uses
two VPCs, one for the Kubernetes control plane, including the Kubernetes API mas‐
ters, API loadbalancer, and etcd depending on the networking model; the other is the
customer VPC where the EKS worker nodes run your pods. As part of the boot pro‐
cess for the EC2 instance, the Kubelet is started. The node’s Kubelet reaches out to the
Kubernetes cluster endpoint to register the node. It connects either to the public
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endpoint outside the VPC or to the private endpoint within the VPC. kubectl com‐
mands reach out to the API endpoint in the EKS VPC. End users reach applications
running in the customer VPC.

Figure 6-9. EKS communication path

There are three ways to configure cluster control traffic and the Kubernetes API end‐
point for EKS, depending on where the control and data planes of the Kubernetes
components run.

The networking modes are as follows:

Public-only
Everything runs in a public subnet, including worker nodes.

Private-only
Runs solely in a private subnet, and Kubernetes cannot create internet-facing
load balancers.

Mixed
Combo of public and private.
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The public endpoint is the default option; it is public because the load balancer for
the API endpoint is on a public subnet, as shown in Figure 6-10. Kubernetes API
requests that originate from within the cluster’s VPC, like when the worker node rea‐
ches out to the control plane, leave the customer VPC, but not the Amazon network. 
One security concern to consider when using a public endpoint is that the API end‐
points are on a public subnet and reachable on the internet.

Figure 6-10. EKS public-only network mode

Figure 6-11 shows the private endpoint mode; all traffic to your cluster API must
come from within your cluster’s VPC. There’s no internet access to your API server;
any kubectl commands must come from within the VPC or a connected network.
The cluster’s API endpoint is resolved by public DNS to a private IP address in the
VPC.
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Figure 6-11. EKS private-only network mode

When both public and private endpoints are enabled, any Kubernetes API requests
from within the VPC communicate to the control plane by the EKS-managed ENIs
within the customer VPC, as demonstrated in Figure 6-12. The cluster API is still
accessible from the internet, but it can be limited using security groups and NACLs.

Please see the AWS documentation for more ways to deploy an
EKS.

Determining what mode to operate in is a critical decision administrators will make.
It will affect the application traffic, the routing for load balancers, and the security of
the cluster. There are many other requirements when deploying a cluster in EKS as 
well. eksctl is one tool to help manage all those requirements. But how does eksctl
accomplish that?
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Figure 6-12. EKS public and private network mode

eksctl

eksctl is a command-line tool developed by Weaveworks, and it is by far the easiest
way to deploy all the components needed to run EKS.

All the information about eksctl is available on its website.

eksctl defaults to creating a cluster with the following default parameters:

• An autogenerated cluster name
• Two m5.large worker nodes
• Use of the official AWS EKS AMI
• Us-west-2 default AWS region
• A dedicated VPC
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A dedicated VPC with 192.168.0.0/16 CIDR range, eksctl will create by default 8 /19
subnets: three private, three public, and two reserved subnets. eksctl will also deploy
a NAT GW that allows for communication of nodes placed in private subnets and an
internet gateway to enable access for needed container images and communication to
the Amazon S3 and Amazon ECR APIs.

Two security groups are set up for the EKS cluster:

Ingress inter node group SG
Allows nodes to communicate with each other on all ports

Control plane security group
Allows communication between the control plane and worker node groups

Node groups in public subnets will have SSH disabled. EC2 instances in the initial
node group get a public IP and can be accessed on high-level ports.

One node group containing two m5.large nodes is the default for eksctl. But how
many pods can that node run? AWS has a formula based on the node type and the
number of interfaces and IP addresses it can support. That formula is as follows:

(Number of network interfaces for the instance type ×
(the number of IP addresses per network interface - 1)) + 2

Using the preceding formula and the default instance size on eksctl, an m5.large can
support a maximum of 29 pods.

System pods count toward the maximum pods. The CNI plugin
and kube-proxy pods run on every node in a cluster, so you’re only
able to deploy 27 additional pods to an m5.large instance. Core‐
DNS runs on nodes in the cluster, which further decrements the
maximum number of pods a node can run.

Teams running clusters must decide on cluster sizing and instance types to ensure no
deployment issues with hitting node and IP limitations. Pods will sit in the “waiting”
state if there are no nodes available with the pod’s IP address. Scaling events for the
EKS node groups can also hit EC2 instance type limits and cause cascading issues.

All of these networking options are configurable via the eksctl config file.

eksctl VPC options are available in the eksctl documentation.
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We have discussed how the size node is important for pod IP addressing and the
number of them we can run. Once the node is deployed, the AWS VPC CNI manages
pod IP addressing for nodes. Let’s dive into the inner workings of the CNI.

AWS VPC CNI
AWS has its open source implementation of a CNI. AWS VPC CNI for the Kuber‐
netes plugin offers high throughput and availability, low latency, and minimal net‐
work jitter on the AWS network. Network engineers can apply existing AWS VPC
networking and security best practices for building Kubernetes clusters on AWS. It
includes using native AWS services like VPC flow logs, VPC routing policies, and
security groups for network traffic isolation.

The open source for AWS VPC CNI is on GitHub.

There are two components to the AWS VPC CNI:

CNI plugin
The CNI plugin is responsible for wiring up the host’s and pod’s network stack
when called. It also configures the interfaces and virtual Ethernet pairs.

ipamd
A long-running node-local IPAM daemon is responsible for maintaining a warm
pool of available IP addresses and assigning an IP address to a pod.

Figure 6-13 demonstrates what the VPC CNI will do for nodes. A customer VPC
with a subnet 10.200.1.0/24 in AWS gives us 250 usable addresses in this subnet.
There are two nodes in our cluster. In EKS, the managed nodes run with the AWS
CNI as a daemon set. In our example, each node has only one pod running, with a
secondary IP address on the ENI, 10.200.1.6 and 10.200.1.8, for each pod. When a
worker node first joins the cluster, there is only one ENI and all its addresses in the
ENI. When pod three gets scheduled to node 1, ipamd assigns the IP address to the
ENI for that pod. In this case, 10.200.1.7 is the same thing on node 2 with pod 4.

When a worker node first joins the cluster, there is only one ENI and all of its
addresses in the ENI. Without any configuration, ipamd always tries to keep one extra
ENI. When several pods running on the node exceeds the number of addresses on a
single ENI, the CNI backend starts allocating a new ENI. The CNI plugin works by 
allocating multiple ENIs to EC2 instances and then attaches secondary IP addresses
to these ENIs. This plugin allows the CNI to allocate as many IPs per instance as
possible.
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Figure 6-13. AWS VPC CNI example

The AWS VPC CNI is highly configurable. This list includes just a few options:

AWS_VPC_CNI_NODE_PORT_SUPPORT
Specifies whether NodePort services are enabled on a worker node’s primary net‐
work interface. This requires additional iptables rules and that the kernel’s
reverse path filter on the primary interface is set to loose.

AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG
Worker nodes can be configured in public subnets, so you need to configure pods
to be deployed in private subnets, or if pods’ security requirement needs are dif‐
ferent from others running on the node, setting this to true will enable that.

AWS_VPC_ENI_MTU
Default: 9001. Used to configure the MTU size for attached ENIs. The valid range
is from 576 to 9001.

WARM_ENI_TARGET
Specifies the number of free elastic network interfaces (and all of their available
IP addresses) that the ipamd daemon should attempt to keep available for pod
assignment on the node. By default, ipamd attempts to keep one elastic network
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interface and all of its IP addresses available for pod assignment. The number of
IP addresses per network interface varies by instance type.

AWS_VPC_K8S_CNI_EXTERNALSNAT
Specifies whether an external NAT gateway should be used to provide SNAT of
secondary ENI IP addresses. If set to true, the SNAT iptables rule and external
VPC IP rule are not applied, and these rules are removed if they have already
been applied. Disable SNAT if you need to allow inbound communication to
your pods from external VPNs, direct connections, and external VPCs, and your
pods do not need to access the internet directly via an internet gateway.

For example, if your pods with a private IP address need to communicate with others’
private IP address spaces, you enable AWS_VPC_K8S_CNI_EXTERNALSNAT by using this
command:

kubectl set env daemonset
-n kube-system aws-node AWS_VPC_K8S_CNI_EXTERNALSNAT=true

All the information for EKS pod networking can be found in the
EKS documentation.

The AWS VPC CNI allows for maximum control over the networking options on
EKS in the AWS network.

There is also the AWS ALB ingress controller that makes managing and deploying
applications on the AWS cloud network smooth and automated. Let’s dig into that
next.

AWS ALB ingress controller
Let’s walk through the example in Figure 6-14 of how the AWS ALB works with
Kubernetes. For a review of what an ingress controller is, please check out Chapter 5.

Let’s discuss all the moving parts of ALB Ingress controller:

1. The ALB ingress controller watches for ingress events from the API server. When
requirements are met, it will start the creation process of an ALB.

2. An ALB is created in AWS for the new ingress resource. Those resources can be
internal or external to the cluster.

3. Target groups are created in AWS for each unique Kubernetes service described
in the ingress resource.

Amazon Web Services | 115

https://oreil.ly/RAVVY


4. Listeners are created for every port detailed in your ingress resource annotations.
Default ports for HTTP and HTTPS traffic are set up if not specified. NodePort
services for each service create the node ports that are used for our health checks.

5. Rules are created for each path specified in your ingress resource. This ensures
traffic to a specific path is routed to the correct Kubernetes service.

Figure 6-14. AWS ALB example

How traffic reaches nodes and pods is affected by one of two modes the ALB can run:

Instance mode
Ingress traffic starts at the ALB and reaches the Kubernetes nodes through each
service’s NodePort. This means that services referenced from ingress resources
must be exposed by type:NodePort to be reached by the ALB.

IP mode
Ingress traffic starts at the ALB and reaches directly to the Kubernetes pods.
CNIs must support a directly accessible pod IP address via secondary IP
addresses on ENI.

The AWS ALB ingress controller allows developers to manage their network needs
like their application components. There is no need for other tool sets in the pipeline.

The AWS networking components are tightly integrated with EKS. Understanding
the basic options of how they work is fundamental for all those looking to scale their
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applications on Kubernetes on AWS using EKS. The size of your subnets, the place‐
ments of the nodes in those subnets, and of course the size of nodes will affect how
large of a network of pods and services you can run on the AWS network. Using a
managed service such as EKS, with open source tools like eksctl, will greatly reduce
the operational overhead of running an AWS Kubernetes cluster.

Deploying an Application on an AWS EKS Cluster
Let’s walk through deploying an EKS cluster to manage our Golang web server:

1. Deploy the EKS cluster.
2. Deploy the web server Application and LoadBalancer.
3. Verify.
4. Deploy ALB Ingress Controller and Verify.
5. Clean up.

Deploy EKS cluster
Let’s deploy an EKS cluster, with the current and latest version EKS supports, 1.20:

export CLUSTER_NAME=eks-demo
eksctl create cluster -N 3 --name ${CLUSTER_NAME} --version=1.20
eksctl version 0.54.0
using region us-west-2
setting availability zones to [us-west-2b us-west-2a us-west-2c]
subnets for us-west-2b - public:192.168.0.0/19 private:192.168.96.0/19
subnets for us-west-2a - public:192.168.32.0/19 private:192.168.128.0/19
subnets for us-west-2c - public:192.168.64.0/19 private:192.168.160.0/19
nodegroup "ng-90b7a9a5" will use "ami-0a1abe779ecfc6a3e" [AmazonLinux2/1.20]
using Kubernetes version 1.20
creating EKS cluster "eks-demo" in "us-west-2" region with un-managed nodes
will create 2 separate CloudFormation stacks for cluster itself and the initial
nodegroup
if you encounter any issues, check CloudFormation console or try
'eksctl utils describe-stacks --region=us-west-2 --cluster=eks-demo'
CloudWatch logging will not be enabled for cluster "eks-demo" in "us-west-2"
you can enable it with
'eksctl utils update-cluster-logging --enable-types={SPECIFY-YOUR-LOG-TYPES-HERE
(e.g. all)} --region=us-west-2 --cluster=eks-demo'
Kubernetes API endpoint access will use default of
{publicAccess=true, privateAccess=false} for cluster "eks-demo" in "us-west-2"
2 sequential tasks: { create cluster control plane "eks-demo",
3 sequential sub-tasks: { wait for control plane to become ready, 1 task:
{ create addons }, create nodegroup "ng-90b7a9a5" } }
building cluster stack "eksctl-eks-demo-cluster"
deploying stack "eksctl-eks-demo-cluster"
waiting for CloudFormation stack "eksctl-eks-demo-cluster"
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<truncate>
building nodegroup stack "eksctl-eks-demo-nodegroup-ng-90b7a9a5"
--nodes-min=3 was set automatically for nodegroup ng-90b7a9a5
deploying stack "eksctl-eks-demo-nodegroup-ng-90b7a9a5"
waiting for CloudFormation stack "eksctl-eks-demo-nodegroup-ng-90b7a9a5"
<truncated>
waiting for the control plane availability...
saved kubeconfig as "/Users/strongjz/.kube/config"
no tasks
all EKS cluster resources for "eks-demo" have been created
adding identity
"arn:aws:iam::1234567890:role/
eksctl-eks-demo-nodegroup-ng-9-NodeInstanceRole-TLKVDDVTW2TZ" to auth ConfigMap
nodegroup "ng-90b7a9a5" has 0 node(s)
waiting for at least 3 node(s) to become ready in "ng-90b7a9a5"
nodegroup "ng-90b7a9a5" has 3 node(s)
node "ip-192-168-31-17.us-west-2.compute.internal" is ready
node "ip-192-168-58-247.us-west-2.compute.internal" is ready
node "ip-192-168-85-104.us-west-2.compute.internal" is ready
kubectl command should work with "/Users/strongjz/.kube/config",
try 'kubectl get nodes'
EKS cluster "eks-demo" in "us-west-2" region is ready

In the output we can see that EKS creating a nodegroup, eksctl-eks-demo-
nodegroup-ng-90b7a9a5, with three nodes:

ip-192-168-31-17.us-west-2.compute.internal
ip-192-168-58-247.us-west-2.compute.internal
ip-192-168-85-104.us-west-2.compute.internal

They are all inside a VPC with three public and three private subnets across three
AZs:

public:192.168.0.0/19 private:192.168.96.0/19
public:192.168.32.0/19 private:192.168.128.0/19
public:192.168.64.0/19 private:192.168.160.0/19

We used the default settings of eksctl, and it deployed the k8s API
as a public endpoint, {publicAccess=true, privateAc

cess=false}.

Now we can deploy our Golang web application in the cluster and expose it with a
LoadBalancer service.

Deploy test application

You can deploy applications individually or all together. dnsutils.yml is our dnsutils
testing pod, database.yml is the Postgres database for pod connectivity testing,
web.yml is the Golang web server and the LoadBalancer service:
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kubectl apply -f dnsutils.yml,database.yml,web.yml

Let’s run a kubectl get pods to see if all the pods are running fine:

kubectl get pods -o wide
NAME                   READY   STATUS    IP               NODE
app-6bf97c555d-5mzfb   1/1     Running   192.168.15.108   ip-192-168-0-94
app-6bf97c555d-76fgm   1/1     Running   192.168.52.42    ip-192-168-63-151
app-6bf97c555d-gw4k9   1/1     Running   192.168.88.61    ip-192-168-91-46
dnsutils               1/1     Running   192.168.57.174   ip-192-168-63-151
postgres-0             1/1     Running   192.168.70.170   ip-192-168-91-46

Now check on the LoadBalancer service:

kubectl get svc clusterip-service
NAME                TYPE           CLUSTER-IP
EXTERNAL-IP                                                              PORT(S)        AGE
clusterip-service   LoadBalancer   10.100.159.28
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com   80:32671/TCP   29m

The service has endpoints as well:
kubectl get endpoints clusterip-service
NAME                ENDPOINTS                                                   AGE
clusterip-service   192.168.15.108:8080,192.168.52.42:8080,192.168.88.61:8080   58m

We should verify the application is reachable inside the cluster, with the ClusterIP
and port, 10.100.159.28:8080; service name and port, clusterip-service:80; and
finally pod IP and port, 192.168.15.108:8080:

kubectl exec dnsutils -- wget -qO- 10.100.159.28:80/data
Database Connected

kubectl exec dnsutils -- wget -qO- 10.100.159.28:80/host
NODE: ip-192-168-63-151.us-west-2.compute.internal, POD IP:192.168.52.42

kubectl exec dnsutils -- wget -qO- clusterip-service:80/host
NODE: ip-192-168-91-46.us-west-2.compute.internal, POD IP:192.168.88.61

kubectl exec dnsutils -- wget -qO- clusterip-service:80/data
Database Connected

kubectl exec dnsutils -- wget -qO- 192.168.15.108:8080/data
Database Connected

kubectl exec dnsutils -- wget -qO- 192.168.15.108:8080/host
NODE: ip-192-168-0-94.us-west-2.compute.internal, POD IP:192.168.15.108

The database port is reachable from dnsutils, with the pod IP and port
192.168.70.170:5432, and the service name and port - postgres:5432:

kubectl exec dnsutils -- nc -z -vv -w 5 192.168.70.170 5432
192.168.70.170 (192.168.70.170:5432) open
sent 0, rcvd 0
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kubectl exec dnsutils -- nc -z -vv -w 5 postgres 5432
postgres (10.100.106.134:5432) open
sent 0, rcvd 0

The application inside the cluster is up and running. Let’s test it from external to the
cluster.

Verify LoadBalancer services for Golang web server

kubectl will return all the information we will need to test, the ClusterIP, the external
IP, and all the ports:

kubectl get svc clusterip-service
NAME                TYPE           CLUSTER-IP
EXTERNAL-IP                                                              PORT(S)        AGE
clusterip-service   LoadBalancer   10.100.159.28
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com   80:32671/TCP   29m

Using the external IP of the load balancer:

wget -qO-
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com/data
Database Connected

Let’s test the load balancer and make multiple requests to our backends:

wget -qO-
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com/host
NODE: ip-192-168-63-151.us-west-2.compute.internal, POD IP:192.168.52.42

wget -qO-
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com/host
NODE: ip-192-168-91-46.us-west-2.compute.internal, POD IP:192.168.88.61

wget -qO-
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com/host
NODE: ip-192-168-0-94.us-west-2.compute.internal, POD IP:192.168.15.108

wget -qO-
a76d1c69125e543e5b67c899f5e45284-593302470.us-west-2.elb.amazonaws.com/host
NODE: ip-192-168-0-94.us-west-2.compute.internal, POD IP:192.168.15.108

kubectl get pods -o wide again will verify our pod information matches the load‐
balancer requests:

kubectl get pods -o wide
NAME                  READY  STATUS    IP              NODE
app-6bf97c555d-5mzfb  1/1    Running   192.168.15.108  ip-192-168-0-94
app-6bf97c555d-76fgm  1/1    Running   192.168.52.42   ip-192-168-63-151
app-6bf97c555d-gw4k9  1/1    Running   192.168.88.61   ip-192-168-91-46
dnsutils              1/1    Running   192.168.57.174  ip-192-168-63-151
postgres-0            1/1    Running   192.168.70.170  ip-192-168-91-46
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We can also check the nodeport, since dnsutils is running inside our VPC, on an
EC2 instance; it can do a DNS lookup on the private host, ip-192-168-0-94.us-
west-2.compute.internal, and the kubectl get service command gave us the
node port, 32671:

kubectl exec dnsutils -- wget -qO-
ip-192-168-0-94.us-west-2.compute.internal:32671/host
NODE: ip-192-168-0-94.us-west-2.compute.internal, POD IP:192.168.15.108

Everything seems to running just fine externally and locally in our cluster.

Deploy ALB ingress and verify
For some sections of the deployment, we will need to know the AWS account ID we
are deploying. Let’s put that into an environment variable. To get your account ID,
you can run the following:

aws sts get-caller-identity
{
    "UserId": "AIDA2RZMTHAQTEUI3Z537",
    "Account": "1234567890",
    "Arn": "arn:aws:iam::1234567890:user/eks"
}

export ACCOUNT_ID=1234567890

If it is not set up for the cluster already, we will have to set up an OIDC provider with
the cluster.

This step is needed to give IAM permissions to a pod running in the cluster using the
IAM for SA:

eksctl utils associate-iam-oidc-provider \
--region ${AWS_REGION} \
--cluster ${CLUSTER_NAME}  \
--approve

For the SA role, we will need to create an IAM policy to determine the permissions
for the ALB controller in AWS:

aws iam create-policy \
--policy-name AWSLoadBalancerControllerIAMPolicy \
--policy-document iam_policy.json

Now we need to create the SA and attach it to the IAM role we created:

eksctl create iamserviceaccount \
> --cluster ${CLUSTER_NAME} \
> --namespace kube-system \
> --name aws-load-balancer-controller \
> --attach-policy-arn
arn:aws:iam::${ACCOUNT_ID}:policy/AWSLoadBalancerControllerIAMPolicy \
> --override-existing-serviceaccounts \
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> --approve
eksctl version 0.54.0
using region us-west-2
1 iamserviceaccount (kube-system/aws-load-balancer-controller) was included
(based on the include/exclude rules)
metadata of serviceaccounts that exist in Kubernetes will be updated,
as --override-existing-serviceaccounts was set
1 task: { 2 sequential sub-tasks: { create IAM role for serviceaccount
"kube-system/aws-load-balancer-controller", create serviceaccount
"kube-system/aws-load-balancer-controller" } }
building iamserviceaccount stack
deploying stack
waiting for CloudFormation stack
waiting for CloudFormation stack
waiting for CloudFormation stack
created serviceaccount "kube-system/aws-load-balancer-controller"

We can see all the details of the SA with the following:

kubectl get sa aws-load-balancer-controller -n kube-system -o yaml
apiVersion: v1
kind: ServiceAccount
metadata:
annotations:
eks.amazonaws.com/role-arn:
arn:aws:iam::1234567890:role/eksctl-eks-demo-addon-iamserviceaccount-Role1
creationTimestamp: "2021-06-27T18:40:06Z"
labels:
app.kubernetes.io/managed-by: eksctl
name: aws-load-balancer-controller
namespace: kube-system
resourceVersion: "16133"
uid: 30281eb5-8edf-4840-bc94-f214c1102e4f
secrets:
- name: aws-load-balancer-controller-token-dtq48

The TargetGroupBinding CRD allows the controller to bind a Kubernetes service
endpoint to an AWS TargetGroup:

kubectl apply -f crd.yml
customresourcedefinition.apiextensions.k8s.io/ingressclassparams.elbv2.k8s.aws
configured
customresourcedefinition.apiextensions.k8s.io/targetgroupbindings.elbv2.k8s.aws
configured

Now we’re ready to the deploy the ALB controller with Helm.

Set the version environment to deploy:

export ALB_LB_VERSION="v2.2.0"

Now deploy it, add the eks Helm repo, get the VPC ID the cluster is running in, and
finally deploy via Helm.
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helm repo add eks https://aws.github.io/eks-charts

export VPC_ID=$(aws eks describe-cluster \
--name ${CLUSTER_NAME} \
--query "cluster.resourcesVpcConfig.vpcId" \
--output text)

helm upgrade -i aws-load-balancer-controller \
eks/aws-load-balancer-controller \
-n kube-system \
--set clusterName=${CLUSTER_NAME} \
--set serviceAccount.create=false \
--set serviceAccount.name=aws-load-balancer-controller \
--set image.tag="${ALB_LB_VERSION}" \
--set region=${AWS_REGION} \
--set vpcId=${VPC_ID}

Release "aws-load-balancer-controller" has been upgraded. Happy Helming!
NAME: aws-load-balancer-controller
LAST DEPLOYED: Sun Jun 27 14:43:06 2021
NAMESPACE: kube-system
STATUS: deployed
REVISION: 2
TEST SUITE: None
NOTES:
AWS Load Balancer controller installed!

We can watch the deploy logs here:

kubectl logs -n kube-system -f deploy/aws-load-balancer-controller

Now to deploy our ingress with ALB:

kubectl apply -f alb-rules.yml
ingress.networking.k8s.io/app configured

With the kubectl describe ing app output, we can see the ALB has been deployed.

We can also see the ALB public DNS address, the rules for the instances, and the end‐
points backing the service.

kubectl describe ing app
Name:             app
Namespace:        default
Address:
k8s-default-app-d5e5a26be4-2128411681.us-west-2.elb.amazonaws.com
Default backend:  default-http-backend:80
(<error: endpoints "default-http-backend" not found>)
Rules:
Host        Path  Backends
  ----        ----  --------
*
          /data   clusterip-service:80 (192.168.3.221:8080,
192.168.44.165:8080,
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192.168.89.224:8080)
          /host   clusterip-service:80 (192.168.3.221:8080,
192.168.44.165:8080,
192.168.89.224:8080)
Annotations:  alb.ingress.kubernetes.io/scheme: internet-facing
kubernetes.io/ingress.class: alb
Events:
Type     Reason                  Age                     From
Message
----     ------                  ----                    ----
-------
Normal   SuccessfullyReconciled  4m33s (x2 over 5m58s)   ingress
Successfully reconciled

It’s time to test our ALB!

wget -qO- k8s-default-app-d5e5a26be4-2128411681.us-west-2.elb.amazonaws.com/data
Database Connected

wget -qO- k8s-default-app-d5e5a26be4-2128411681.us-west-2.elb.amazonaws.com/host
NODE: ip-192-168-63-151.us-west-2.compute.internal, POD IP:192.168.44.165

Cleanup
Once you are done working with EKS and testing, make sure to delete the applica‐
tions pods and the service to ensure that everything is deleted:

kubectl delete -f dnsutils.yml,database.yml,web.yml

Clean up the ALB:

kubectl delete -f alb-rules.yml

Remove the IAM policy for ALB controller:

aws iam  delete-policy
--policy-arn arn:aws:iam::${ACCOUNT_ID}:policy/AWSLoadBalancerControllerIAMPolicy

Verify there are no leftover EBS volumes from the PVCs for test application. Delete
any EBS volumes found for the PVC’s for the Postgres test database:

aws ec2 describe-volumes --filters
Name=tag:kubernetes.io/created-for/pv/name,Values=*
--query "Volumes[].{ID:VolumeId}"

Verify there are no load balancers running, ALB or otherwise:

aws elbv2 describe-load-balancers --query "LoadBalancers[].LoadBalancerArn"

aws elb describe-load-balancers --query "LoadBalancerDescriptions[].DNSName"

Let’s make sure we delete the cluster, so you don’t get charged for a cluster doing
nothing:

eksctl delete cluster --name ${CLUSTER_NAME}
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We deployed a service load balancer that will for each service deploy a classical ELB
into AWS. The ALB controller allows developers to use ingress with ALB or NLBs to
expose the application externally. If we were to scale our application to multiple back‐
end services, the ingress allows us to use one load balancer and route based on layer 7
information.

In the next section, we will explore GCP in the same manner we just did for AWS.

Google Compute Cloud (GCP)
In 2008, Google announced App Engine, a platform as a service to deploy Java,
Python, Ruby, and Go applications. Like its competitors, GCP has extended its service
offerings. Cloud providers work to distinguish their offerings, so no two products are
ever the same. Nonetheless, many products do have a lot in common. For instance,
GCP Compute Engine is an infrastructure as a service to run virtual machines. The
GCP network consists of 25 cloud regions, 76 zones, and 144 network edge locations.
Utilizing both the scale of the GCP network and Compute Engine, GCP has released
Google Kubernetes Engine, its container as a service platform.

GCP Network Services
Managed and unmanaged Kubernetes clusters on GCP share the same networking
principles. Nodes in either managed or unmanaged clusters run as Google Compute
Engine instances. Networks in GCP are VPC networks. GCP VPC networks, like in
AWS, contain functionality for IP management, routing, firewalling, and peering.

The GCP network is divided into tiers for customers to choose from; there are pre‐
mium and standard tiers. They differ in performance, routing, and functionality, so
network engineers must decide which is suitable for their workloads. The premium
tier is the highest performance for your workloads. All the traffic between the inter‐
net and instances in the VPC network is routed within Google’s network as far as pos‐
sible. If your services need global availability, you should use premium. Make sure to
remember that the premium tier is the default unless you make configuration
changes.

The standard tier is a cost-optimized tier where traffic between the internet and VMs
in the VPC network is routed over the internet in general. Network engineers should
pick this tier for services that are going to be hosted entirely within a region. The
standard tier cannot guarantee performance as it is subject to the same performance
that all workloads share on the internet.

The GCP network differs from the other providers by having what is called global
resources. Global because users can access them in any zone within the same project.
These resources include such things as VPC, firewalls, and their routes.
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See the GCP documentation for a more comprehensive overview of
the network tiers.

Regions and zones
Regions are independent geographic areas that contain multiple zones. Regional
resources offer redundancy by being deployed across multiple zones for that region.
Zones are deployment areas for resources within a region. One zone is typically a data
center within a region, and administrators should consider them a single fault
domain. In fault-tolerant application deployments, the best practice is to deploy
applications across multiple zones within a region, and for high availability, you
should deploy applications across various regions. If a zone becomes unavailable, all
the zone resources will be unavailable until owners restore services.

Virtual private cloud
A VPC is a virtual network that provides connectivity for resources within a GCP
project. Like accounts and subscriptions, projects can contain multiple VPC net‐
works, and by default, new projects start with a default auto-mode VPC network that
also includes one subnet in each region. Custom-mode VPC networks can contain no
subnets. As stated earlier, VPC networks are global resources and are not associated
with any particular region or zone.

A VPC network contains one or more regional subnets. Subnets have a region, CIDR,
and globally unique name. You can use any CIDR for a subnet, including one that
overlaps with another private address space. The specific choice of subnet CIDR
impacts which IP addresses you can reach and which networks you can peer.

Google creates a “default” VPC network, with randomly generated
subnets for each region. Some subnets may overlap with another
VPC’s subnet (such as the default VPC network in another Google
Cloud project), which will prevent peering.

VPC networks support peering and shared VPC configuration. Peering a VPC net‐
work allows the VPC in one project to route to the VPC in another, placing them on
the same L3 network. You cannot peer with any overlapping VPC network, as some
IP addresses exist in both networks. A shared VPC allows another project to use spe‐
cific subnets, such as creating machines that are part of that subnet. The VPC docu‐
mentation has more information.
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Peering VPC networks is standard, as organizations often assign
different teams, applications, or components to their project in
Google Cloud. Peering has upsides for access control, quota, and
reporting. Some admins may also create multiple VPC networks
within a project for similar reasons.

Subnet
Subnets are portions within a VPC network with one primary IP range with the abil‐
ity to have zero or more secondary ranges. Subnets are regional resources, and each
subnet defines a range of IP addresses. A region can have more than one subnet.
There are two modes of subnet formulation when you create them: auto or custom.
When you create an auto-mode VPC network, one subnet from each region is auto‐
matically created within it using predefined IP ranges. When you define a custom-
mode VPC network, GCP does not provision any subnets, giving administrators
control over the ranges. Custom-mode VPC networks are suited for enterprises and
production environments for network engineers to use.

Google Cloud allows you to “reserve” static IP addresses for internal and external IP
addresses. Users can utilize reserved IP addresses for GCE instances, load balancers,
and other products beyond our scope. Reserved internal IP addresses have a name
and can be generated automatically or assigned manually. Reserving an internal static
IP address prevents it from being randomly automatically assigned while not in use.

Reserving external IP addresses is similar; although you can request an automatically
assigned IP address, you cannot choose what IP address to reserve. Because you are
reserving a globally routable IP address, charges apply in some circumstances. You
cannot secure an external IP address that you were assigned automatically as an
ephemeral IP address.

Routes and firewall rules
When deploying a VPC, you can use firewall rules to allow or deny connections to
and from your application instances based on the rules you deploy. Each firewall rule
can apply to ingress or egress connections, but not both. The instance level is where
GCP enforces rules, but the configuration pairs with the VPC network, and you can‐
not share firewall rules among VPC networks, peered networks included. VPC fire‐
wall rules are stateful, so when a TCP session starts, firewall rules allow bidirectional
traffic similar to an AWS security group.

Cloud load balancing
Google Cloud Load Balancer (GCLB) offers a fully distributed, high-performance,
scalable load balancing service across GCP, with various load balancer options. With
GCLB, you get a single Anycast IP that fronts all your backend instances across the
globe, including multiregion failover. In addition, software-defined load balancing
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services enable you to apply load balancing to your HTTP(S), TCP/SSL, and UDP
traffic. You can also terminate your SSL traffic with an SSL proxy and HTTPS load
balancing. Internal load balancing enables you to build highly available internal serv‐
ices for your internal instances without requiring any load balancers to be exposed to
the internet.

The vast majority of GCP users make use of GCP’s load balancers with Kubernetes
ingress. GCP has internal-facing and external-facing load balancers, with L4 and L7
support. GKE clusters default to creating a GCP load balancer for ingresses and
type: LoadBalancer services.

To expose applications outside a GKE cluster, GKE provides a built-in GKE ingress
controller and GKE service controller, which deploys a Google Cloud load balancer
on behalf of GKE users. GKE provides three different load balancers to control access
and spread incoming traffic across your cluster as evenly as possible. You can config‐
ure one service to use multiple types of load balancers simultaneously:

External load balancers
Manage traffic from outside the cluster and outside the VPC network. External
load balancers use forwarding rules associated with the Google Cloud network to
route traffic to a Kubernetes node.

Internal load balancers
Manage traffic coming from within the same VPC network. Like external load
balancers, internal ones use forwarding rules associated with the Google Cloud
network to route traffic to a Kubernetes node.

HTTP load balancers
Specialized external load balancers used for HTTP traffic. They use an ingress
resource rather than a forwarding rule to route traffic to a Kubernetes node.

When you create an ingress object, the GKE ingress controller configures a Google
Cloud HTTP(S) load balancer according to the ingress manifest and the associated
Kubernetes service rules manifest. The client sends a request to the load balancer. The 
load balancer is a proxy; it chooses a node and forwards the request to that node’s
NodeIP:NodePort combination. The node uses its iptables NAT table to select a
pod. As we learned in earlier chapters, kube-proxy manages the iptables rules on
that node.

When an ingress creates a load balancer, the load balancer is “pod aware” instead of
routing to all nodes (and relying on the service to route requests to a pod), and the
load balancer routes to individual pods. It does this by tracking the underlying End
points/EndpointSlice object (as covered in Chapter 5) and using individual pod IP
addresses as target addresses.
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Cluster administrators can use an in-cluster ingress provider, such as ingress-Nginx
or Contour. A load balancer points to applicable nodes running the ingress proxy in
such a setup, which routes requests to the applicable pods from there. This setup is
cheaper for clusters that have many ingresses but incurs performance overhead.

GCE instances
GCE instances have one or more network interfaces. A network interface has a net‐
work and subnetwork, a private IP address, and a public IP address. The private IP
address must be part of the subnetwork. Private IP addresses can be automatic and
ephemeral, custom and ephemeral, or static. External IP addresses can be automatic
and ephemeral, or static. You can add more network interfaces to a GCE instance.
Additional network interfaces don’t need to be in the same VPC network. For exam‐
ple, you may have an instance that bridges two VPCs with varying levels of security. 
Let’s discuss how GKE uses these instances and manages the network services that
empower GKE.

GKE
Google Kubernetes Engine (GKE) is Google’s managed Kubernetes service. GKE runs
a hidden control plane, which cannot be directly viewed or accessed. You can only
access specific control plane configurations and the Kubernetes API.

GKE exposes broad cluster config around things like machine types and cluster scal‐
ing. It reveals only some network-related settings. At the time of writing, NetworkPo‐
licy support (via Calico), max pods per node (maxPods in the kubelet, --node-CIDR-
mask-size in kube-controller-manager), and the pod address range (--cluster-
CIDR in kube-controller-manager) are the customizable options. It is not possible to
directly set apiserver/kube-controller-manager flags.

GKE supports public and private clusters. Private clusters don’t issue public IP
addresses to nodes, which means nodes are accessible only within your private net‐
work. Private clusters also allow you to restrict access to the Kubernetes API to spe‐
cific IP addresses. GKE runs worker nodes using automatically managed GCE
instances by creating creates node pools.

GCP GKE nodes
Networking for GKE nodes is comparable to networking for self-managed Kuber‐
netes clusters on GKE. GKE clusters define node pools, which are a set of nodes with
an identical configuration. This configuration contains GCE-specific settings as well
as general Kubernetes settings. Node pools define (virtual) machine type, autoscaling,
and the GCE service account. You can also set custom taints and labels per node pool.
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A cluster exists on exactly one VPC network. Individual nodes can have their
network tags for crafting specific firewall rules. Any GKE cluster running 1.16 or later
will have a kube-proxy DaemonSet so that all new nodes in the cluster will automati‐
cally have the kube-proxy start. The size of the subnet allows will affect the size of the
cluster. So, pay attention to the size of that when you deploy clusters that scale. There
is a formula you can use to calculate the maximum number of nodes, N, that a given
netmask can support. Use S for the netmask size, whose valid range is between 8 and
29:

N = 2(32 -S) - 4

Calculate the size of the netmask, S, required to support a maximum of N nodes:

S = 32 - ⌈log2(N + 4)⌉

Table 6-2 also outlines cluster node and how it scales with subnet size.

Table 6-2. Cluster node scale with subnet size

Subnet primary IP range Maximum nodes
/29 Minimum size for a subnet’s primary IP range: 4 nodes

/28 12 nodes

/27 28 nodes

/26 60 nodes

/25 124 nodes

/24 252 nodes

/23 508 nodes

/22 1,020 nodes

/21 2,044 nodes

/20 The default size of a subnet’s primary IP range in auto mode networks: 4,092 nodes

/19 8,188 nodes

/8 Maximum size for a subnet’s primary IP range: 16,777,212 nodes

If you use GKE’s CNI, one end of the veth pair is attached to the pod in its namespace
and connects the other side to the Linux bridge device cbr0.1, exactly how we out‐
lined it in Chapters 2 and 3].

Clusters span either the zone or region boundary; zonal clusters have only a single
control plane. Regional clusters have multiple replicas of the control plane. Also,
when you deploy clusters, there are two cluster modes with GKE: VPC-native and
routes based. A cluster that uses alias IP address ranges is considered a VPC-native
cluster. A cluster that uses custom static routes in a VPC network is called a routes-
based cluster. Table 6-3 outlines how the creation method maps with the cluster
mode.
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Table 6-3. Cluster mode with cluster creation method

Cluster creation method Cluster network mode
Google Cloud Console VPC-native

REST API Routes-based

gcloud v256.0.0 and higher or v250.0.0 and lower Routes-based

gcloud v251.0.0–255.0.0 VPC-native

When using VPC-native, administrators can also take advantage of network endpoint
groups (NEG), which represent a group of backends served by a load balancer. NEGs
are lists of IP addresses managed by an NEG controller and are used by Google Cloud
load balancers. IP addresses in an NEG can be primary or secondary IP addresses of a
VM, which means they can be pod IPs. This enables container-native load balancing
that sends traffic directly to pods from a Google Cloud load balancer.

VPC-native clusters have several benefits:

• Pod IP addresses are natively routable inside the cluster’s VPC network.
• Pod IP addresses are reserved in network before pod creation.
• Pod IP address ranges are dependent on custom static routes.
• Firewall rules apply to just pod IP address ranges instead of any IP address on the

cluster’s nodes.
• GCP cloud network connectivity to on-premise extends to pod IP address

ranges.

Figure 6-15 shows the mapping of GKE to GCE components.

Figure 6-15. NEG to GCE components

Here is a list of improvements that NEGs bring to the GKE network:

Improved network performance
The container-native load balancer talks directly with the pods, and connections
have fewer network hops; both latency and throughput are improved.
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Increased visibility
With container-native load balancing, you have visibility into the latency from
the HTTP load balancer to the pods. The latency from the HTTP load balancer
to each pod is visible, which was aggregated with node IP-based container-native
load balancing. This increased visibility makes troubleshooting your services at
the NEG level easier.

Support for advanced load balancing
Container-native load balancing offers native support in GKE for several HTTP
load-balancing features, such as integration with Google Cloud services like Goo‐
gle Cloud Armor, Cloud CDN, and Identity-Aware Proxy. It also features load-
balancing algorithms for accurate traffic distribution.

Like most managed Kubernetes offerings from major providers, GKE is tightly inte‐
grated with Google Cloud offerings. Although much of the software driving GKE is
opaque, it uses standard resources such as GCE instances that can be inspected and
debugged like any other GCP resources. If you really need to manage your own clus‐
ters, you will lose out on some functionality, such as container-aware load balancing.

It’s worth noting that GCP does not yet support IPv6, unlike AWS and Azure.

Finally, we’ll look at Kubernetes networking on Azure.

Azure
Microsoft Azure, like other cloud providers, offers an assortment of enterprise-ready
network solutions and services. Before we can discuss how Azure AKS networking
works, we should discuss Azure deployment models. Azure has gone through some
significant iterations and improvements over the years, resulting in two different
deployment models that can encounter Azure. These models differ in how resources
are deployed and managed and may impact how users leverage the resources.

The first deployment model was the classic deployment model. This model was the
initial deployment and management method for Azure. All resources existed inde‐
pendently of each other, and you could not logically group them. This was cumber‐
some; users had to create, update, and delete each component of a solution, leading to
errors, missed resources, and additional time, effort, and cost. Finally, these resources
could not even be tagged for easy searching, adding to the difficulty of the solution.

In 2014, Microsoft introduced the Azure Resource Manager as the second model.
This new model is the recommended model from Microsoft, with the recommenda‐
tion going so far as to say that you should redeploy your resources using the Azure
Resource Manager (ARM). The primary change with this model was the introduction
of the resource group. Resource groups are a logical grouping of resources that allows
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for tracking, tagging, and configuring the resources as a group rather than
individually.

Now that we understand the basics of how resources are deployed and managed in
Azure, we can discuss the Azure network service offerings and how they interact with
the Azure Kubernetes Service (AKS) and non-Azure Kubernetes offerings.

Azure Networking Services
The core of Azure networking services is the virtual network, also known as an Azure
Vnet. The Vnet establishes an isolated virtual network infrastructure to connect your
deployed Azure resources such as virtual machines and AKS clusters. Through addi‐
tional resources, Vnets connect your deployed resources to the public internet as well
as your on-premise infrastructure. Unless the configuration is changed, all Azure
Vnets can communicate with the internet through a default route.

In Figure 6-16, an Azure Vnet has a single CIDR of 192.168.0.0/16. Vnets, like other
Azure resources, require a subscription to place the Vnet into a resource group for
the Vnet. The security of the Vnet can be configured while some options, such as IAM
permissions, are inherited from the resource group and the subscription. The Vnet is
confined to a specified region. Multiple Vnets can exist within a single region, but a
Vnet can exist within only one region.

Figure 6-16. Azure Vnet

Azure backbone infrastructure
Microsoft Azure leverages a globally dispersed network of data centers and zones.
The foundation of this dispersal is the Azure region, which comprises a set of data
centers within a latency-defined area, connected by a low-latency, dedicated network
infrastructure. A region can contain any number of data centers that meet these crite‐
ria, but two to three are often present per region. Any area of the world containing at
least one Azure region is known as Azure geography.

Availability zones further divide a region. Availability zones are physical locations
that can consist of one or more data centers maintained by independent power,
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cooling, and networking infrastructure. The relationship of a region to its availability
zones is architected so that a single availability zone failure cannot bring down an
entire region of services. Each availability zone in a region is connected to the other
availability zones in the region but not dependent on the different zones. Availability
zones allow Azure to offer 99.99% uptime for supported services. A region can con‐
sist of multiple availability zones, as shown in Figure 6-17, which can, in turn, consist
of numerous data centers.

Figure 6-17. Region

Since a Vnet is within a region and regions are divided into availability zones, Vnets
are also available across the availability zones of the region they are deployed. As
shown in Figure 6-18, it is a best practice when deploying infrastructure for high
availability to leverage multiple availability zones for redundancy. Availability zones
allow Azure to offer 99.99% uptime for supported services. Azure allows for the use
of load balancers for networking across redundant systems such as these.

Figure 6-18. Vnet with availability zones
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The Azure documentation has an up-to-date list of Azure geogra‐
phies, regions, and availability zones.

Subnets
Resource IPs are not assigned directly from the Vnet. Instead, subnets divide and
define a Vnet. The subnets receive their address space from the Vnet. Then, private
IPs are allocated to provisioned resources within each subnet. This is where the IP
addressing AKS clusters and pods will come. Like Vnets, Azure subnets span availa‐
bility zones, as depicted in Figure 6-19.

Figure 6-19. Subnets across availability zones

Route tables
As mentioned in previous sections, a route table governs subnet communication or
an array of directions on where to send network traffic. Each newly provisioned sub‐
net comes equipped with a default route table populated with some default system
routes. This route cannot be deleted or changed. The system routes include a route to
the Vnet the subnet is defined within, routes for 10.0.0.0/8 and 192.168.0.0/16
that are by default set to go nowhere, and most importantly a default route to the
internet. The default route to the internet allows any newly provisioned resource with
an Azure IP to communicate out to the internet by default. This default route is an
essential difference between Azure and some other cloud service providers and
requires adequate security measures to protect each Azure Vnet.

Figure 6-20 shows a standard route table for a newly provisioned AKS setup. There
are routes for the agent pools with their CIDRs as well as their next-hop IP. The next-
hop IP is the route the table has defined for the path, and the next-hop type is set for
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a virtual appliance, which would be the load balancer in this case. What is not present
are those default system routes. The default routes are still in the configuration, just
not viewable in the route table. Understanding Azure’s default networking behavior is
critical from a security perspective and from troubleshooting and planning
perspectives.

Figure 6-20. Route table

Some system routes, known as optional default routes, affect only if the capabilities,
such as Vnet peering, are enabled. Vnet peering allows Vnets anywhere globally to
establish a private connection across the Azure global infrastructure backbone to
communicate.

Custom routes can also populate route tables, which the Border Gateway Protocol
either creates if leveraged or uses user-defined routes. User-defined routes are essen‐
tial because they allow the network administrators to define routes beyond what
Azure establishes by default, such as proxies or firewall routes. Custom routes also
impact the system default routes. While you cannot alter the default routes, a cus‐
tomer route with a higher priority can overrule it. An example of this is to use a user-
defined route to send traffic bound for the internet to a next-hop of a virtual firewall
appliance rather than the internet directly. Figure 6-21 defines a custom route called
Google with a next-hop type of internet. As long as the priorities are set up correctly,
this custom route will send that traffic out the default system route for the internet,
even if another rule redirects the remaining internet traffic.

Figure 6-21. Route table with custom route
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Route tables can also be created on their own and then used to configure a subnet.
This is useful for maintaining a single route table for multiple subnets, especially
when there are many user-defined routes involved. A subnet can have only one route
table associated with it, but a route table can be associated with multiple subnets. The
rules of configuring a user-created route table and a route table created as part of the
subnet’s default creation are the same. They have the same default system routes and
will update with the same optional default routes as they come into effect.

While most routes within a route table will use an IP range as the source address, 
Azure has begun to introduce the concept of using service tags for sources. A service
tag is a phrase that represents a collection of service IPs within the Azure backend,
such as SQL.EastUs, which is a service tag that describes the IP address range for the
Microsoft SQL Platform service offering in the eastern US. With this feature, it could
be possible to define a route from one Azure service, such as AzureDevOps, as the
source, and another service, such as Azure AppService, as the destination without
knowing the IP ranges for either.

The Azure documentation has a list of available service tags.

Public and private IPs
Azure allocates IP addresses as independent resources themselves, which means that
a user can create a public IP or private IP without attaching it to anything. These IP
addresses can be named and built in a resource group that allows for future alloca‐
tion. This is a crucial step when preparing for AKS cluster scaling as you want to
make sure that enough private IP addresses have been reserved for the possible pods
if you decide to leverage Azure CNI for networking. Azure CNI will be discussed in a
later section.

IP address resources, both public and private, are also defined as either dynamic or
static. A static IP address is reserved to not change, while a dynamic IP address can
change if it is not allocated to a resource, such as a virtual machine or AKS pod.

Network security groups
NSGs are used to configure Vnets, subnets, and network interface cards (NICs) with
inbound and outbound security rules. The rules filter traffic and determine whether
the traffic will be allowed to proceed or be dropped. NSG rules are flexible to filter
traffic based on source and destination IP addresses, network ports, and network pro‐
tocols. An NSG rule can use one or multiple of these filter items and can apply many
NSGs.
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An NSG rule can have any of the following components to define its filtering:

Priority
This is a number between 100 and 4096. The lowest numbers are evaluated first,
and the first match is the rule that is used. Once a match is found, no further
rules are evaluated.

Source/destination
Source (inbound rules) or destination (outbound rules) of the traffic inspected.
The source/destination can be any of the following:

• Individual IP address
• CIDR block (i.e., 10.2.0.0/24)
• Microsoft Azure service tag
• Application security groups

Protocol
TCP, UDP, ICMP, ESP, AH, or Any.

Direction
The rule for inbound or outbound traffic.

Port range
Single ports or ranges can be specified here.

Action
Allow or deny the traffic.

Figure 6-22 shows an example of an NSG.

Figure 6-22. Azure NSG

There are some considerations to keep in mind when configuring Azure network
security groups. First, two or more rules cannot exist with the same priority and
direction. The priority or direction can match as long as the other does not. Second, 
port ranges can be used only in the Resource Manager deployment model, not the
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classic deployment model. This limitation also applies to IP address ranges and ser‐
vice tags for the source/destination. Third, when specifying the IP address for an
Azure resource as the source/destination, if the resource has both a public and private
IP address, use the private IP address. Azure performs the translation from public to
private IP addressing outside this process, and the private IP address will be the right
choice at the time of processing.

Communication outside the virtual network
The concepts described so far have mainly pertained to Azure networking within a
single Vnet. This type of communication is vital in Azure networking but far from the
only type. Most Azure implementations will require communication outside the vir‐
tual network to other networks, including, but not limited to, on-premise networks,
other Azure virtual networks, and the internet. These communication paths require
many of the same considerations as the internal networking processes and use many
of the same resources, with a few differences. This section will expand on some of
those differences.

Vnet peering can connect Vnets in different regions using global virtual network
peering, but there are constraints with certain services such as load balancers.

For a list of these constraints, see the Azure documentation.

Communication outside of Azure to the internet uses a different set of resources. 
Public IPs, as discussed earlier, can be created and assigned to a resource in Azure.
The resource uses its private IP address for all networking internal to Azure. When
the traffic from the resource needs to exit the internal networks to the internet, Azure
translates the private IP address into the resource’s assigned public IP. At this point,
the traffic can leave to the internet. Incoming traffic bound for the public IP address
of an Azure resource translates to the resource’s assigned private IP address at the
Vnet boundary, and the private IP is used from then on for the rest of the traffic’s trip
to its destination. This traffic path is why all subnet rules for things like NSGs are
defined using private IP addresses.

NAT can also be configured on a subnet. If configured, resources on a subnet with
NAT enabled do not need a public IP address to communicate with the internet. NAT
is enabled on a subnet to allow outbound-only internet traffic with a public IP from a
pool of provisioned public IP addresses. NAT will enable resources to route traffic to
the internet for requests such as updates or installs and return with the requested
traffic but prevents the resources from being accessible on the internet. It is important
to note that, when configured, NAT takes priority over all other outbound rules and
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replaces the default internet destination for the subnet. NAT also uses port address 
translation (PAT) by default.

Azure load balancer
Now that you have a method of communicating outside the network and communi‐
cation to flow back into the Vnet, a way to keep those lines of communication avail‐
able is needed. Azure load balancers are often used to accomplish this by distributing
traffic across backend pools of resources rather than a single resource to handle the
request. There are two primary load balancer types in Azure: the standard load bal‐
ancer and the application gateway.

Azure standard load balancers are layer 4 systems that distribute incoming traffic
based on layer 4 protocols such as TCP and UDP, meaning traffic is routed based on
IP address and port. These load balancers filter incoming traffic from the internet,
but they can also load balance traffic from one Azure resource to a set of other Azure
resources. The standard load balancer uses a zero-trust network model. This model
requires an NSG to “open” traffic to be inspected by the load balancer. If the attached
NSG does not permit the traffic, the load balancer will not attempt to route it.

Azure application gateways are similar to standard load balancers in that they distrib‐
ute incoming traffic but differently in that they do so at layer 7. This allows for the
inspection of incoming HTTP requests to filter based on URI or host headers. Appli‐
cation gateways can also be used as web application firewalls to further secure and
filter traffic. Additionally, the application gateway can also be used as the ingress con‐
troller for AKS clusters.

Load balancers, whether standard or application gateways, have some basic concepts
that sound be considered:

Frontend IP address
Either public or private depending on the use, this is the IP address used to target
the load balancer and, by extension, the backend resources it is balancing.

SKU
Like other Azure resources, this defines the “type” of the load balancer and,
therefore, the different configuration options available.

Backend pool
This is the collection of resources that the load balancer is distributing traffic to,
such as a collection of virtual machines or the pods within an AKS cluster.
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Health probes
These are methods used by the load balancer to ensure the backend resource is
available for traffic, such as a health endpoint that returns an OK status:

Listener
A configuration that tells the load balancer what type of traffic to expect,
such as HTTP requests.

Rules
Determines how to route the incoming traffic for that listener.

Figure 6-23 illustrates some of these primary components within the Azure load bal‐
ancer architecture. Traffic comes into the load balancer and is compared to the listen‐
ers to determine if the load balancer balances the traffic. Then the traffic is evaluated
against the rules and finally sent on to the backend pool. Backend pool resources with
appropriately responding health probes will process the traffic.

Figure 6-23. Azure load balancer components

Figure 6-24 shows how AKS would use the load balancer.

Now that we have a basic knowledge of the Azure network, we can discuss how Azure
uses these constructs in its managed Kubernetes offering, Azure Kubernetes Service.
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Figure 6-24. AKS load balancing

Azure Kubernetes Service
Like other cloud providers, Microsoft understood the need to leverage the power of
Kubernetes and therefore introduced the Azure Kubernetes Service as the Azure
Kubernetes offering. AKS is a hosted service offering from Azure and therefore han‐
dles a large portion of the overhead of managing Kubernetes. Azure handles compo‐
nents such as health monitoring and maintenance, leaving more time for
development and operations engineers to leverage the scalability and power of
Kubernetes for their solutions.

AKS can have clusters created and managed using the Azure CLI, Azure PowerShell,
the Azure Portal, and other template-based deployment options such as ARM tem‐
plates and HashiCorp’s Terraform. With AKS, Azure manages the Kubernetes masters
so that the user only needs to handle the node agents. This allows Azure to offer the
core of AKS as a free service where the only payment required is for the agent nodes
and peripheral services such as storage and networking.

The Azure Portal allows for easy management and configuration of the AKS environ‐
ment. Figure 6-25 shows the overview page of a newly provisioned AKS environment.
On this page, you can see information and links to many of the crucial integrations
and properties. The cluster’s resource group, DNS address, Kubernetes version, net‐
working type, and a link to the node pools are visible in the Essentials section.

Figure 6-26 zooms in on the Properties section of the overview page, where users can
find additional information and links to corresponding components. Most of the data
is the same as the information in the Essentials section. However, the various subnet
CIDRs for the AKS environment components can be viewed here for things such as
the Docker bridge and the pod subnet.
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Figure 6-25. Azure Portal AKS overview

Figure 6-26. Azure Portal AKS properties

Kubernetes pods created within AKS are attached to virtual networks and can access
network resources through abstraction. The kube-proxy on each AKS node creates
this abstraction, and this component allows for inbound and outbound traffic. Addi‐
tionally, AKS seeks to make Kubernetes management even more streamlined by sim‐
plifying how to roll changes to virtual network changes. Network services in AKS are
autoconfigured when specific changes occur. For example, opening a network port to
a pod will also trigger relevant changes to the attached NSGs to open those ports.

By default, AKS will create an Azure DNS record that has a public IP. However, the
default network rules prevent public access. The private mode can create the cluster
to use no public IPs and block public access for only internal use of the cluster. This
mode will cause the cluster access to be available only from within the Vnet. By
default, the standard SKU will create an AKS load balancer. This configuration can be
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changed during deployment if deploying via the CLI. Resources not included in the
cluster are made in a separate, auto-generated resource group.

When leveraging the kubenet networking model for AKS, the following rules are
true:

• Nodes receive an IP address from the Azure virtual network subnet.
• Pods receive an IP address from a logically different address space than the

nodes.
• The source IP address of the traffic switches to the node’s primary address.
• NAT is configured for the pods to reach Azure resources on the Vnet.

It is important to note that only the nodes receive a routable IP; the pods do not.

While kubenet is an easy way to administer Kubernetes networking within the Azure
Kubernetes Service, it is not the only way. Like other cloud providers, Azure also
allows for the use the CNI when managing Kubernetes infrastructure. Let’s discuss
CNI in the next section.

Azure CNI
Microsoft has provided its own CNI plugin for Azure and AKS, Azure CNI. The first
significant difference between this and kubenet is that the pods receive routable IP
information and can be accessed directly. This difference places additional impor‐
tance on the need for IP address space planning. Each node has a maximum number
of pods it can use, and many IP addresses are reserved for that use.

More information can be found on the Azure Container Network‐
ing GitHub.

With Azure CNI, traffic inside the Vnet is no longer NAT’d to the node’s IP address
but to the pod’s IP itself, as illustrated in Figure 6-27. Outside traffic, such as to the
internet, is still NAT’d to the node’s IP address. Azure CNI still performs the backend
IP address management and routing for these items, though, as all resources on the
same Azure Vnet can communicate with each other by default.

The Azure CNI can also be used for Kubernetes deployments outside AKS. While
there is additional work to be done on the cluster that Azure would typically handle,
this allows you to leverage Azure networking and other resources while maintaining
more control over the customarily managed aspects of Kubernetes under AKS.
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Figure 6-27. Azure CNI

Azure CNI also provides the added benefit of allowing for the separation of duties
while maintaining the AKS infrastructure. The Azure CNI creates the networking
resources in a separate resource group. Being in a different resource group allows for
more control over permissions at the resource group level within the Azure Resource
Management deployment model. Different teams can access some components of
AKS, such as the networking, without needing access to others, such as the applica‐
tion deployments.

Azure CNI is not the only way to leverage additional Azure services to enhance your
Kubernetes network infrastructure. The next section will discuss the use of an Azure
application gateway as a means of controlling ingress into your Kubernetes cluster.

Application gateway ingress controller
Azure allows for the deployment of an application gateway inside the AKS cluster
deployment to serve as the application gateway ingress controller (AGIC). This
deployment model eliminates the need for maintaining a secondary load balancer
outside the AKS infrastructure, thereby reducing maintenance overhead and error
points. AGIC deploys its pods in the cluster. It then monitors other aspects of the
cluster for configuration changes. When a change is detected, AGIC updates the
Azure Resource Manager template that configures the load balancer and then applies
the updated configuration. Figure 6-28 illustrates this.
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Figure 6-28. Azure AGIC

There are AKS SKU limitations for the use of the AGIC, only supporting Stan‐
dard_v2 and WAF_v2, but those SKUs also have autoscaling capabilities. Use cases for
using such a form of ingress, such as the need for high scalability, have the potential
for the AKS environment to scale. Microsoft supports the use of both Helm and the
AKS add-on as deployment options for the AGIC. These are the critical differences
between the two options:

• Helm deployment values cannot be edited when using the AKS add-on.
• Helm supports Prohibited Target configuration. An AGIC can configure the

application gateway to target only the AKS instances without impacting other
backend components.

• The AKS add-on, as a managed service, will be automatically updated to its cur‐
rent and more secure versions. Helm deployments will need manual updating.

Even though AGIC is configured as the Kubernetes ingress resource, it still carries the
full benefit of the cluster’s standard layer 7 application gateway. Application gateway
services such as TLS termination, URL routing, and the web application firewall
capability are all configurable for the cluster as part of the AGIC.

While many Kubernetes and networking fundamentals are universal across cloud
providers, Azure offers its own spin on Kubernetes networking through its
enterprise-focused resource design and management. Whether you have a need for a
single cluster using basic settings and kubenet or a large-scale deployment with
advanced networking through the use of deployed load balancers and application
gateways, Microsoft’s Azure Kubernetes Service can be leveraged to deliver a reliable,
managed Kubernetes infrastructure.
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Deploying an Application to Azure Kubernetes Service
Standing up an Azure Kubernetes Service cluster is one of the basic skills needed to
begin exploring AKS networking. This section will go through the steps of standing
up a sample cluster and deploying the Golang web server example from Chapter 1 to
that cluster. We will be using a combination of the Azure Portal, the Azure CLI, and
kubectl to perform these actions.

Before we begin with the cluster deployment and configuration, we should discuss
the Azure Container Registry (ACR). The ACR is where you store container images
in Azure. For this example, we will use the ACR as the location for the container
image we will be deploying. To import an image to the ACR, you will need to have the
image locally available on your computer. Once you have the image available, we have
to prep it for the ACR.

First, identify the ACR repository you want to store the image in and log in from the
Docker CLI with docker login <acr_repository>.azurecr.io. For this example,
we will use the ACR repository tjbakstestcr, so the command would be docker
login tjbakstestcr.azurecr.io. Next, tag the local image you wish to import to
the ACR with <acr_repository>.azurecr.io\<imagetag>. For this example, we will
use an image currently tagged aksdemo. Therefore, the tag would be tjbak
stestcr.azure.io/aksdemo. To tag the image, use the command docker tag

<local_image_tag> <acr_image_tag>. This example would use the command
docker tag aksdemo tjbakstestcr.azure.io/aksdem. Finally, we push the image
to the ACR with docker push tjbakstestcr.azure.io/aksdem.

You can find additional information on Docker and the Azure
Container Registry in the official documentation.

Once the image is in the ACR, the final prerequisite is to set up a service principal.
This is easier to set up before you begin, but you can do this during the AKS cluster
creation. An Azure service principal is a representation of an Azure Active Directory
Application object. Service principals are generally used to interact with Azure
through application automation. We will be using a service principal to allow the AKS
cluster to pull the aksdemo image from the ACR. The service principal needs to have
access to the ACR repository that you store the image in. You will need to record the
client ID and secret of the service principal you want to use.
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You can find additional information on Azure Active Directory
service principals in the documentation.

Now that we have our image in the ACR and our service principal client ID and
secret, we can begin deploying the AKS cluster.

Deploying an Azure Kubernetes Service cluster
The time has come to deploy our cluster. We are going to start in the Azure Portal.
Go to portal.azure.com to log in. Once logged in, you should see a dashboard with a
search bar at the top that will be used to locate services. From the search bar, we will
be typing kubernetes and selecting the Kubernetes Service option from the drop-
down menu, which is outlined in Figure 6-29.

Figure 6-29. Azure Kubernetes search

Now we are on the Azure Kubernetes Services blade. Deployed AKS clusters are
viewed from this screen using filters and queries. This is also the screen for creating
new AKS clusters. Near the top of the screen, we are going to select Create as shown
in Figure 6-30. This will cause a drop-down menu to appear, where we will select
“Create a Kubernetes cluster.”

Figure 6-30. Creating an Azure Kubernetes cluster
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Next we will define the properties of the AKS cluster from the “Create Kubernetes
cluster” screen. First, we will populate the Project Details section by selecting the sub‐
scription that the cluster will be deployed to. There is a drop-down menu that allows
for easier searching and selection. For this example, we are using the
tjb_azure_test_2 subscription, but any subscription can work as long as you have
access to it. Next, we have to define the resource group we will use to group the AKS
cluster. This can be an existing resource group or a new one can be created. For this
example, we will create a new resource group named go-web.

After the Project Details section is complete, we move on to the Cluster Details sec‐
tion. Here, we will define the name of the cluster, which will be “go-web” for this
example. The region, availability zones, and Kubernetes version fields are also defined
in this section and will have predefined defaults that can be changed. For this exam‐
ple, however, we will use the default “(US) West 2” region with no availability zones
and the default Kubernetes version of 1.19.11.

Not all Azure regions have availability zones that can be selected. If
availability zones are part of the AKS architecture that is being
deployed, the appropriate regions should be considered. You can
find more information on AKS regions in the availability zones
documentation.

Finally, we will complete the Primary Node Pool section of the “Create Kubernetes
cluster” screen by selecting the node size and node count. For this example, we are
going to keep the default node size of DS2 v2 and the default node count of 3. While
most virtual machines, sizes are available for use within AKS, there are some restric‐
tions. Figure 6-31 shows the options we have selected filled in.

You can find more information on AKS restrictions, including
restricted node sizes, in the documentation.

Click the “Next: Node pools” button to move to the Node Pools tab. This page allows
for the configuration of additional node pools for the AKS cluster. For this example,
we are going to leave the defaults on this page and move on to the Authentication
page by clicking the “Next: Authentication” button at the bottom of the screen.
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Figure 6-31. Azure Kubernetes create page

Figure 6-32 shows the Authentication page, where we will define the authentication
method that the AKS cluster will use to connect to attached Azure services such as
the ACR we discussed previously in this chapter. “System-Assigned Managed Iden‐
tity” is the default authentication method, but we are going to select the “Service prin‐
cipal” radio button.

If you did not create a service principal at the beginning of this section, you can cre‐
ate a new one here. If you create a service principal at this stage, you will have to go
back and grant that service principal permissions to access the ACR. However, since
we will use a previously created service principal, we are going to click the “Configure
service principal” link and enter the client ID and secret.
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Figure 6-32. Azure Kubernetes Authentication page

The remaining configurations will remain at the defaults at this time. To complete the
AKS cluster creation, we are going to click the “Review + create” button. This will
take us to the validation page. As shown in Figure 6-33, if everything is defined
appropriately, the validation will return a “Validation Passed” message at the top of
the screen. If something is misconfigured, a “Validation Failed” message will be there
instead. As long as validation passes, we will review the settings and click Create.

Azure | 151



Figure 6-33. Azure Kubernetes validation page

You can view the deployment status from the notification bell on the top of the Azure
screen. Figure 6-34 shows our example deployment in progress. This page has infor‐
mation that can be used to troubleshoot with Microsoft should an issue arise such as
the deployment name, start time, and correlation ID.

Our example deployed completely without issue, as shown in Figure 6-35. Now that
the AKS cluster is deployed, we need to connect to it and configure it for use with our
example web server.

152 | Chapter 6: Kubernetes and Cloud Networking



Figure 6-34. Azure Kubernetes deployment progress

Figure 6-35. Azure Kubernetes deployment complete

Connecting to and configuring AKS

We will now shift to working with the example go-web AKS cluster from the
command line. To manage AKS clusters from the command line, we will primarily
use the kubectl command. Azure CLI has a simple command, az aks install-cli,
to install the kubectl program for use. Before we can use kubectl, though, we need
to gain access to the cluster. The command az aks get-credentials

--resource-group <resource_group_name> --name <aks_cluster_name> is used to
gain access to the AKS cluster. For our example, we will use az aks get-

credentials --resource-group go-web --name go-web to access our go-web clus‐
ter in the go-web resource group.
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Next we will attach the Azure container registry that has our aksdemo image.
The command az aks update -n <aks_cluster_name> -g <cluster_resource_
group_name> --attach-acr <acr_repo_name> will attach a named ACR repo to an
existing AKS cluster. For our example, we will use the command az aks update -n
tjbakstest -g tjbakstest --attach-acr tjbakstestcr. Our example runs for a
few moments and then produces the output shown in Example 6-1.

Example 6-1. AttachACR output

{- Finished ..
  "aadProfile": null,
  "addonProfiles": {
    "azurepolicy": {
      "config": null,
      "enabled": false,
      "identity": null
    },
    "httpApplicationRouting": {
      "config": null,
      "enabled": false,
      "identity": null
    },
    "omsAgent": {
      "config": {
        "logAnalyticsWorkspaceResourceID":
        "/subscriptions/7a0e265a-c0e4-4081-8d76-aafbca9db45e/
        resourcegroups/defaultresourcegroup-wus2/providers/
        microsoft.operationalinsights/
        workspaces/defaultworkspace-7a0e265a-c0e4-4081-8d76-aafbca9db45e-wus2"
      },
      "enabled": true,
      "identity": null
    }
  },
  "agentPoolProfiles": [
    {
      "availabilityZones": null,
      "count": 3,
      "enableAutoScaling": false,
      "enableNodePublicIp": null,
      "maxCount": null,
      "maxPods": 110,
      "minCount": null,
      "mode": "System",
      "name": "agentpool",
      "nodeImageVersion": "AKSUbuntu-1804gen2containerd-2021.06.02",
      "nodeLabels": {},
      "nodeTaints": null,
      "orchestratorVersion": "1.19.11",
      "osDiskSizeGb": 128,
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      "osDiskType": "Managed",
      "osType": "Linux",
      "powerState": {
        "code": "Running"
      },
      "provisioningState": "Succeeded",
      "proximityPlacementGroupId": null,
      "scaleSetEvictionPolicy": null,
      "scaleSetPriority": null,
      "spotMaxPrice": null,
      "tags": null,
      "type": "VirtualMachineScaleSets",
      "upgradeSettings": null,
      "vmSize": "Standard_DS2_v2",
      "vnetSubnetId": null
    }
  ],
  "apiServerAccessProfile": {
    "authorizedIpRanges": null,
    "enablePrivateCluster": false
  },
  "autoScalerProfile": null,
  "diskEncryptionSetId": null,
  "dnsPrefix": "go-web-dns",
  "enablePodSecurityPolicy": null,
  "enableRbac": true,
  "fqdn": "go-web-dns-a59354e4.hcp.westus.azmk8s.io",
  "id":
  "/subscriptions/7a0e265a-c0e4-4081-8d76-aafbca9db45e/
  resourcegroups/go-web/providers/Microsoft.ContainerService/managedClusters/go-web",
  "identity": null,
  "identityProfile": null,
  "kubernetesVersion": "1.19.11",
  "linuxProfile": null,
  "location": "westus",
  "maxAgentPools": 100,
  "name": "go-web",
  "networkProfile": {
    "dnsServiceIp": "10.0.0.10",
    "dockerBridgeCidr": "172.17.0.1/16",
    "loadBalancerProfile": {
      "allocatedOutboundPorts": null,
      "effectiveOutboundIps": [
        {
          "id":
          "/subscriptions/7a0e265a-c0e4-4081-8d76-aafbca9db45e/
          resourceGroups/MC_go-web_go-web_westus/providers/Microsoft.Network/
          publicIPAddresses/eb67f61d-7370-4a38-a237-a95e9393b294",
          "resourceGroup": "MC_go-web_go-web_westus"
        }
      ],
      "idleTimeoutInMinutes": null,
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      "managedOutboundIps": {
        "count": 1
      },
      "outboundIpPrefixes": null,
      "outboundIps": null
    },
    "loadBalancerSku": "Standard",
    "networkMode": null,
    "networkPlugin": "kubenet",
    "networkPolicy": null,
    "outboundType": "loadBalancer",
    "podCidr": "10.244.0.0/16",
    "serviceCidr": "10.0.0.0/16"
  },
  "nodeResourceGroup": "MC_go-web_go-web_westus",
  "powerState": {
    "code": "Running"
  },
  "privateFqdn": null,
  "provisioningState": "Succeeded",
  "resourceGroup": "go-web",
  "servicePrincipalProfile": {
    "clientId": "bbd3ac10-5c0c-4084-a1b8-39dd1097ec1c",
    "secret": null
  },
  "sku": {
    "name": "Basic",
    "tier": "Free"
  },
  "tags": {
    "createdby": "tjb"
  },
  "type": "Microsoft.ContainerService/ManagedClusters",
  "windowsProfile": null
}

This output is the CLI representation of the AKS cluster information. This means
that the attachment was successful. Now that we have access to the AKS cluster and
the ACR is attached, we can deploy the example Go web server to the AKS cluster.

Deploying the Go web server
We are going to deploy the Golang code shown in Example 6-2. As mentioned earlier
in this chapter, this code has been built into a Docker image and now is stored in the
ACR in the tjbakstestcr repository. We will be using the following deployment
YAML file to deploy the application.
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Example 6-2. Kubernetes Podspec for Golang minimal webserver

apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: go-web
spec:
  containers:
  - name: go-web
    image: go-web:v0.0.1
    ports:
    - containerPort: 8080
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 5
    readinessProbe:
      httpGet:
        path: /
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 5

Breaking down this YAML file, we see that we are creating two AKS resources: a
deployment and a service. The deployment is configured for the creation of a con‐
tainer named go-web and a container port 8080. The deployment also references the
aksdemo ACR image with the line image: tjbakstestcr.azurecr.io/aksdemo as the
image that will be deployed to the container. The service is also configured with the
name go-web. The YAML specifies the service is a load balancer listening on port
8080 and targeting the go-web app.

Now we need to publish the application to the AKS cluster. The command kubectl
apply -f <yaml_file_name>.yaml will publish the application to the cluster. We will
see from the output that two things are created: deployment.apps/go-web and
service/go-web. When we run the command kubectl get pods, we can see an out‐
put like that shown here:

○ → kubectl get pods
NAME                      READY   STATUS    RESTARTS   AGE
go-web-574dd4c94d-2z5lp   1/1     Running   0          5h29m

Now that the application is deployed, we will connect to it to verify it is up and run‐
ning. When a default AKS cluster is stood up, a load balancer is deployed with it with
a public IP address. We could go through the portal and locate that load balancer and
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public IP address, but kubectl offers an easier path. The command kubectl get
[.keep-together]#service go-web produces this output:

○ → kubectl get service go-web
NAME     TYPE           CLUSTER-IP   EXTERNAL-IP    PORT(S)          AGE
go-web   LoadBalancer   10.0.3.75    13.88.96.117   8080:31728/TCP   21h

In this output, we see the external IP address of 13.88.96.117. Therefore, if everything
deployed correctly, we should be able to cURL 13.88.96.117 at port 8080 with the
command curl 13.88.96.117:8080. As we can see from this output, we have a suc‐
cessful deployment:

○ → curl 13.88.96.117:8080 -vvv
*   Trying 13.88.96.117...
* TCP_NODELAY set
* Connected to 13.88.96.117 (13.88.96.117) port 8080 (#0)
> GET / HTTP/1.1
> Host: 13.88.96.117:8080
> User-Agent: curl/7.64.1
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Fri, 25 Jun 2021 20:12:48 GMT
< Content-Length: 5
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host 13.88.96.117 left intact
Hello* Closing connection 0

Going to a web browser and navigating to http://13.88.96.117:8080 will also be avail‐
able, as shown in Figure 6-36.

Figure 6-36. Azure Kubernetes Hello app

AKS conclusion
In this section, we deployed an example Golang web server to an Azure Kubernetes
Service cluster. We used the Azure Portal, the az cli, and kubectl to deploy and
configure the cluster and then deploy the application. We leveraged the Azure con‐
tainer registry to host our web server image. We also used a YAML file to deploy the
application and tested it with cURL and web browsing.
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Conclusion
Each cloud provider has its nuanced differences when it comes to network services
provided for Kubernetes clusters. Table 6-4 highlights some of those differences.
There are lots of factors to choose from when picking a cloud service provider, and
even more when selecting the managed Kubernetes platform to run. Our aim in this
chapter was to educate administrators and developers on the choices you will have to
make when managing workloads on Kubernetes.

Table 6-4. Cloud network and Kubernetes summary

AWS Azure GCP
Virtual network VPC Vnet VPC

Network scope Region Region Global

Subnet boundary Zone Region Region

Routing scope Subnet Subnet VPC

Security controls NACL/SecGroups Network security groups/Application
SecGroup

Firewall

IPv6 Yes Yes No

Kubernetes managed eks aks gke

ingress AWS ALB controller Nginx-Ingress GKE ingress controller

Cloud custom CNI AWS VPC CNI Azure CNI GKE CNI

Load Balancer support ALB L7, L4 w/NLB, and Nginx L4 Azure Load Balancer, L7 w/Nginx L7, HTTP(S)

Network policies Yes (Calico/Cilium) Yes (Calico/Cilium) Yes (Calico/Cilium)

We have covered many layers, from the OSI foundation to running networks in the
cloud for our clusters. Cluster administrators, network engineers, and developers
alike have many decisions to make, such as the subnet size, the CNI to choose, and
the load balancer type, to name a few. Understanding all of those and how they will
affect the cluster network was the basis for this book. This is just the beginning of
your journey for managing your clusters at scale. We have managed to cover only the
networking options available for managing Kubernetes clusters. Storage, compute,
and even how to deploy workloads onto those clusters are decisions you will have to
make now. The O’Reilly library has an extensive number of books to help, such as
Production Kubernetes (Rosso et al.), where you learn what the path to production
looks like when using Kubernetes, and Hacking Kubernetes (Martin and Hausenblas),
on how to harden Kubernetes and how to review Kubernetes clusters for security
weaknesses.

We hope this guide has helped make those networking choices easy for you. We were
inspired to see what the Kubernetes community has done and are excited to see what
you build on top of the abstractions Kubernetes provides for you.
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